Abstract:
The present invention is a miniature camera shutter module for use in miniature camera applications. It is an object of the present invention to provide the miniature camera shutter module with solenoid controlled blades in order to alter the amount and quality of light passing through a conduit disposed on the surface of the module. In some embodiments of the present invention, the blade comprises a shutter to completely block light. In other embodiments, the blade comprises an aperture, a neutral-density filter, a monochromatic filter, and the like. In some embodiments of the present invention, the miniature camera shutter module is positioned within a more elaborate miniature camera chassis.
Abstract:
Systems for positioning a functional element, such as an optical lens, include a housing, a primary guide pin coupled to the housing, a functional group that includes the functional element, and a vibrational actuator assembly. The functional group is movably coupled with the primary guide pin and includes a first friction surface and a second friction surface. The first and second friction surfaces are oriented relative to one another at one of an obtuse angle and a straight angle. The vibrational actuator assembly is substantially registered relative to the housing and includes a first drive element and a second drive element. The first drive element is configured to interact with the first friction surface and the second drive element is configured to interact with the second friction surface. The vibrational actuator assembly operates to translate the functional group. Some embodiments include position sensing elements configured to detect position(s) of the functional element(s), and control system(s) configured to operate the actuators based on feedback from the position sensing system(s).
Abstract:
Embodiments of the present invention relate to systems and methods of position sensing that use a sensing target with a pattern of features thereupon, and to positioning modules and systems that position functional elements using such position sensing systems. A position sensing system includes an encoding module and a processing module. The encoding module has an active encoding region through which the sensing target is configured to move. Further, the encoding module is configured to generate a signal based on a portion of the sensing target within the active encoding region. The active encoding region has a dimension greater than the average critical dimension of the pattern of features. The processing module is configured to convert the signal generated into a position data based on an input range condition and an initial position condition.
Abstract:
method and apparatus for aligning an optical element in an optical sub-assembly is provided. Pivoting fine tuning plates connected to the main body of the sub-assembly are used to set the height and angle of the optical element. The optical element is connected on a pin through the optical element frame between two portions of the main body. Pivoting the fine tuning plate with a cam causes the optical element pin to cant, adjusting the position and/or angle of the optical element. In one embodiment of the present invention, a laser may be used to better align the optical element.