Abstract:
A vaporizer device and associated methodology for providing accurate sampling through substantially efficient, complete and uniform single pass vaporization of a liquid sample by avoiding liquid pre-vaporization and downtime attributable to system damage from incomplete vaporization, particularly in the distribution, transportation, and custody transfer of natural gas. The vaporizer device includes at least one input port for receiving a liquid sample, a channel for directing the liquid to a vaporizer core and a heating assembly within the vaporizer core configured to flash vaporize the liquid sample. The vaporized sample can then be passed to an outlet for sample analysis.
Abstract:
A sampling device having at least two inputs each configured to receive samples from a corresponding feedstock input line and a sample accumulator. The device also includes a mass flow controller associated with each feedstock input line, each mass flow controller having a sample output and being configured to receive a signal representative of the flow rate at each input, where each mass flow controller adjusts the flow rate of its respective sample from its respective sample output in response to receiving representative signals. Further the device includes at least a first and second sample output line respectively connected with a sample output of each mass flow controller, each sample output line being connected to an input of the sample accumulator for introduction to the sample accumulator of samples from the output of the mass flow controllers.
Abstract:
System and method for natural gas liquid sample pressure regulating vaporizer system including a vented cabinet having a gas sample input, a pressure regulator, a single path vaporizer, a liquid block, a heated regulator and a gas sample outlet, and a communications assembly including a temperature controller, a communication outlet, and a power input electrically connected via appropriate secure feedthroughs to the cabinet.
Abstract:
A system and method for substantially coincidental sample takeoff flow rate verification which detects unstable flow conditions in a pipeline, terminates fluid sample analysis during flow instability, and resumes sample takeoff when a steady flow state is re-established.
Abstract:
Provided herein is a solar powered system for a gas sampling and analysis for placement and operation remote from conventional infra-structure that utilizes a minimum of power to obtain a sample extracted from a source such as a pipeline or well-head, conditions the extracted sample, transmits the conditioned sample through vacuum jacketed tubing to an analyzer while maintaining the sample at a temperature and pressure preventing phase transition, condensation or component partitioning.
Abstract:
A system and method for conditioning of very low pressure gas samples extracted from a source, heating the samples, boosting the pressure to a level appropriate for analysis, regulating the gas sample temperature and pressure to prevent dew-point dropout from Joules Thompson condensation, and passing the gas sample to an a remotely located analyzer or analyzer array where the electrical power for the pressurizing pump and heated regulator is provided by heat tracing.
Abstract:
An improved liquid vaporization and conditioning system, and associated method, for efficiently vaporizing a liquid sample for accurately determining the constituent components thereof providing enhanced flow rate, pressure and thermal control, the improvement including a combination of a resistance temperature detector, a sweeping bend to, an in-line thermal break, a flow buffering input manifold, enhanced multi-path heater vaporizer construction with four heater units, a vaporizer output mixing manifold and control elements providing a capability for partial shutdown in the event of compromised heating or flow anomalies without risk of flow loss/volume capacity beyond a permissible threshold and an improved, modular heat vaporizer enclosure.
Abstract:
A cryogenic liquid sampling system including a chamber having affixed therein a sample pump to pull a cryogenic liquid sample from an external source and an enclosure. The enclosure includes a supply port to receive an input stream of a gas, an input port connected to the chamber via a vacuum line, a sample pump port connected to the chamber via a pump line and configured to feed therethrough gas received at the supply port to the sample pump, a vacuum device connected to the input port and configured to generate a vacuum within the chamber by pulling air from the vacuum line, and processing circuitry to control the vacuum device and the sample pump to perform transfer of a cryogenic liquid sample from the external source to an external device.
Abstract:
A multi-stage pressure regulation system, device and associated methodology for reducing the pressure of gas passing through a gas sample conditioning system. The device and method allow for automatic and/or manual configuration settings for regulating different types of gas having different profiles while still avoiding dew point dropout thereby ensuring accurate sample analysis at a downstream analyzer. The pressure regulating device includes a housing having a core, a vapor sample input port, a plurality of openings on an upper surface, a plurality of pressure regulating valves configured to reduce the pressure of a vapor sample, and an assembly having a base and substantially central stem orthogonal to the base and extending axially therefrom, the stem being disposed within the core.
Abstract:
A system and method for substantially coincidental sample takeoff flow rate verification which detects unstable flow conditions in a pipeline, terminates fluid sample analysis during flow instability, and resumes sample takeoff when a steady flow state is re-established.