Abstract:
The present invention discloses an inter-Node B handover method, wherein a target eNB sends a Handover Request Acknowledge message including handover reference frequency point information through a source eNB to a user equipment, wherein the handover reference frequency point information includes center frequency point information of an uplink component carrier designated for the user equipment to initiate a random access request. Further, the present invention discloses another inter-Node B handover method, wherein a target eNB orderly arrays center frequency point information of uplink component carriers of a target cell to obtain a first list, the target eNB sends a Handover Request Acknowledge message including the first list through a source eNB to a user equipment, and the user equipment requests a random access according to the center frequency point information of a first uplink component carrier. Through the solution of the present invention, the usage rate of the random access resources for the target eNB can be improved effectively and the conflict of random is accesses can be reduced.
Abstract:
A method for mapping physical random access channel (PRACHs) is provided in the present invention, wherein W PRACHs have the same time domain location and the serial number of each PRACH is w=0, 1, 2, . . . , W−1. The method includes: mapping the PRACHs with the odd w numbers from high frequency to low frequency, or from low frequency to high frequency in a usable frequency band, mapping the PRACHs with the even w numbers from low frequency to high frequency, or from high frequency to low frequency in the usable frequency band. One PRACH occupies 6 continuous resource blocks in the frequency domain, and the frequency bands occupied by the two adjacent PRACHs in the frequency domain do not overlap, furthermore the same mapping process is used for each version number r. The PRACHs which need to be processed by the same station could be distributed evenly in the time domain, and at the same time the inter-cell interference of the second type PRACH could be reduced to the greatest extent through the present invention.
Abstract:
The present invention provides a method for determining the number of random access channels which is applied to a time division duplex system. The method comprises: a terminal determining configuration parameters related to the number of the random access channels in an UpPTS based on system configuration, said configuration parameters including the number of downlink-to-uplink switch-points in one radio frame NSP, the density of PRACHs in a random access configuration DRA, a system frame number of a system frame in which said UpPTS is located nf, and a version index corresponding to a PRACH configuration index rRA; and said terminal then calculating directly the number of the PRACHs in said UpPTS based on the configuration parameters. The present invention also provides a method for sending a SRS of a time division duplex system using the method for determining the number of the random access channels.
Abstract:
A method for indicating an uplink resource is provided, including that: when a base station side transmits an uplink resource indication signaling in a downlink subframe, an uplink subframe indication signaling corresponding to the uplink resource indication signaling being transmitted together; and the uplink subframe indication signaling is used for indicating an uplink subframe used by a user side to transmit data according to the uplink resource indication signaling. A system for implementing the method is also provided, which can distinguish a resource indication signaling corresponding to different uplink subframes in the same downlink subframe, and avoid that all the users of different uplink subframes transmit the data in the same resource of the same uplink frame, thereby avoiding mutual interference between the users of the uplink subframes, ensuring system performance and resulting in less signaling overhead.
Abstract:
The present invention discloses a method for mapping physical random access channels, which comprises the following steps: the PRACHs in the same time domain location are mapped from low frequency to high frequency, or from high frequency to low frequency in usable frequency resource, wherein one PRACH occupies 6 resource blocks, and the frequency bands occupied by two adjacent PRACHs in the frequency domain do not overlap; or the PRACHs in the same time domain location are mapped from two sides to the middle in usable frequency resource, wherein one PRACH occupies 6 resource blocks, and the frequency bands occupied by two adjacent PRACHs in the frequency domain do not overlap. The present invention enables uniformly distributing the PRACHs which require to be processed by the same base station in the time domain, and decreasing the inter-cell interference of the second type PRACH to the utmost extent at the same time.
Abstract:
The present invention provides a method for transmitting reference signals comprising: during carrier aggregation, a user equipment sending physical uplink shared channel (PUSCH) on one or more component carriers, and sending demodulation reference signals (DM RS) for the PUSCH on each section of bandwidth occupied by the PUSCH on each component carrier, wherein a DM RS sequence on a section of bandwidth is an independent sequence or part of an independent sequence and forms an independent sequence with DM RS sequences on multiple sections of bandwidth other than the section of bandwidth; the section of bandwidth is a section of continuous bandwidth occupied by the PUSCH on any component carrier, or is any of the multiple sections of bandwidth occupied by the PUSCH on any component carrier. The Present invention further provides a corresponding apparatus.
Abstract:
The invention discloses a method for processing power headroom and a terminal thereof, wherein the method comprises: when transmitting a physical uplink shared channel (PUSCH) and/or a physical uplink control channel (PUCCH) on subframe i and component carrier group j, the terminal measures power headroom on the subframe i and the component carrier group j; the terminal reports the power headroom to the base station and indicates the type of the reported power headroom when reporting. The invention specifically indicates the type to which the power headroom belongs by reporting the type while reporting the power headroom, thereby avoiding confusion.
Abstract:
A method for sending uplink scheduling grant signaling and a base station, applied in an Advanced Long Term Evolution (LTE-A) system, the method includes: a base station, according to a number of clusters occupied with non-consecutive resource allocation by a Physical Uplink Shared Channel (PUSCH) of a scheduled user equipment in a component carrier, configuring at least one uplink scheduling grant signaling for the user equipment, wherein each uplink scheduling grant signaling indicates an allocation of resource for one or two clusters occupied by the PUSCH; and the base station allocating a Physical Downlink Control Channel (PDCCH) for each uplink scheduling grant signaling, and sending the uplink scheduling grant signaling to the user equipment. The flexibility of the resource allocation in the case of multiple clusters is enhanced, meanwhile the reliability of transmission of the scheduling grant signaling is ensured.
Abstract:
A system and a method for allocating Sounding Reference Signal (SRS) resources are provided in the present invention, the method includes: an e-Node-B (eNB) allocating a SRS bandwidth with 4n Resource Blocks (RBs) to a terminal, and equally dividing a time domain sequence of a SRS into t portions in the SRS bandwidth; the eNB configuring a time domain RePetition Factor (RPF) used by the UE, and the eNB configuring the UE to use one or more cyclic shifts in L cyclic shifts for each UE; then the eNB notifying the UE of a value of the time domain RPF, a location of a used frequency comb and a used cyclic shift by signaling, wherein n is a positive integer; the RPF satisfies a following condition: 48 × n RPF can be exactly divided by 12; t is an integer by which 48 × n RPF can be exactly divided; and Lg. With the present invention, the number of the SRS resources in a LTE-A system can be efficiently increased.
Abstract:
The present invention discloses an inter-Node B handover method, wherein a target eNB sends a Handover Request Acknowledge message including handover reference frequency point information through a source eNB to a user equipment, wherein the handover reference frequency point information includes center frequency point information of an uplink component carrier designated for the user equipment to initiate a random access request. Further, the present invention discloses another inter-Node B handover method, wherein a target eNB orderly arrays center frequency point information of uplink component carriers of a target cell to obtain a first list, the target eNB sends a Handover Request Acknowledge message including the first list through a source eNB to a user equipment, and the user equipment requests a random access according to the center frequency point information of a first uplink component carrier. Through the solution of the present invention, the usage rate of the random access resources for the target eNB can be improved effectively and the conflict of random is accesses can be reduced.