Abstract:
A method and apparatus for generating three-dimensional (3D) images of flow structures and their flow lumen using ultrasound techniques. According to one aspect of the invention, a border between a flow region and a non-flow region is used to render a three-dimensional image of the flow lumen of the flow structure. The images may be viewed in real-time and/or stored on a machine-readable medium. In one embodiment, the three-dimensional images may be manipulated in a number of viewing directions/angles/distances/positions/styles. In one embodiment, a flow lumen may be displayed using a virtual angioscopic view.
Abstract:
A method for quantitatively estimating the amount of tissue that contains moving blood using power Doppler ultrasound. A region of interest is identified from a frozen image (i.e., a snapshot screen display created by displaying the last real-time image for a given scan). The region of interest is specified by using a pointing device (e.g., a mouse). An object that contains one hundred percent blood flow and is located at the same depth as the region of interest, but not necessarily inside the region of interest, is identified and the corresponding power noted and designated as the reference power level. The display is adjusted to show the one hundred percent blood flow vessel in a designated color (such as, for example, green) and all other power levels are normalized to the reference power level. The fractional blood volume is quantitatively estimated by summing the normalized Doppler power levels in a region of interest and dividing the sum by the number of pixels in region of interest. The numerical result for the specified region of interest may be shown on the display of the ultrasound scanner.