-
公开(公告)号:US11455895B2
公开(公告)日:2022-09-27
申请号:US16987336
申请日:2020-08-06
Applicant: Skydio, Inc.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Galton Bachrach , Adam Bry
IPC: G08G5/00 , G06F3/04845 , G06F3/04817 , G06T17/05 , G06T19/00 , G06F3/04847 , B64C39/02 , B64D47/08 , G05D1/10 , G05D1/00 , G08G5/04 , G01S13/89 , G01S17/89 , H04N5/272 , G06T17/10 , G06V20/13 , G06V20/10 , H04N13/204
Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof.
-
公开(公告)号:US20210276733A1
公开(公告)日:2021-09-09
申请号:US17218483
申请日:2021-03-31
Applicant: Skydio, Inc.
Inventor: Yevgeniy Kozlenko , Jack Zhu , Gareth Cross , Teodor Tomic , Adam Bry , Abraham Galton Bachrach
Abstract: Described herein are systems for automated docking of an unmanned aerial vehicle. For example, some systems include a landing surface configured to hold an unmanned aerial vehicle; a box configured to enclose the landing surface in a first arrangement of the dock and expose the landing surface in a second arrangement of the dock; and a retractable arm, wherein the landing surface is positioned at an end of the retractable arm and the retractable arm is configured to extend to move the landing surface outside of the box and contract to pull the landing surface inside of the box.
-
公开(公告)号:US20210125503A1
公开(公告)日:2021-04-29
申请号:US16987336
申请日:2020-08-06
Applicant: Skydio, Inc.
Inventor: Peter Henry , Jack Zhu , Brian Richman , Harrison Zheng , Hayk Martirosyan , Matthew Donahoe , Abraham Galton Bachrach , Adam Bry
IPC: G08G5/00 , H04N5/272 , G06F3/0484 , G06F3/0481 , G06T17/05 , G06T19/00 , G06K9/00 , B64C39/02 , B64D47/08 , G05D1/10 , G05D1/00 , G08G5/04 , G01S13/89 , G01S17/89
Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof.
-
公开(公告)号:US20190050000A1
公开(公告)日:2019-02-14
申请号:US15671743
申请日:2017-08-08
Applicant: Skydio, Inc.
Inventor: Ryan Kennedy , Peter Henry , Hayk Maritrosyan , Jack Zhu , Abraham Bachrach , Adam Bry
Abstract: An autonomous vehicle that is equipped with image capture devices can use information gathered from the image capture devices to plan a future three-dimensional (3D) trajectory through a physical environment. To this end, a technique is described for image-space based motion planning. In an embodiment, a planned 3D trajectory is projected into an image-space of an image captured by the autonomous vehicle. The planned 3D trajectory is then optimized according to a cost function derived from information (e.g., depth estimates) in the captured image. The cost function associates higher cost values with identified regions of the captured image that are associated with areas of the physical environment into which travel is risky or otherwise undesirable. The autonomous vehicle is thereby encouraged to avoid these areas while satisfying other motion planning objectives.
-
-
-