Abstract:
A method of manufacturing a display panel includes forming a circuit layer including a gate, a source, and a drain on a base substrate and forming a light emitting element layer on the circuit layer. The forming of the circuit layer includes sequentially forming a preliminary metal layer, a preliminary oxide layer comprising molybdenum and tantalum, and a preliminary capping layer which comprise a preliminary electrode layer, cleaning the preliminary electrode layer, forming a photoresist layer pattern on the preliminary electrode layer, etching the preliminary electrode layer, and removing the photoresist layer pattern. During the etching of the preliminary electrode layer, a ratio between a removal speed ER1 of the preliminary oxide layer and a removal speed ER2 of the preliminary metal layer satisfies Equation 1 to maintain a low reflection property 1≤ER2/ER1≤3. [Equation 1]
Abstract:
A display device includes: a first inorganic insulating layer; a wiring disposed on the first inorganic insulating layer; a second inorganic insulating layer covering the wiring; and a display element disposed on the second inorganic insulating layer, wherein the wiring includes a lower layer including at least one of aluminum and an aluminum alloy, an upper layer disposed on the lower layer and including at least one of titanium and titanium oxide, and an intermediate layer disposed between the lower layer and the upper layer and including titanium aluminide.
Abstract:
A display panel includes: a base layer; a signal line disposed on the base layer, the signal line including: a first layer including aluminum; and a second layer directly disposed on the first layer, the second layer including a niobium-titanium alloy; a first thin film transistor connected to the signal line; a second thin film transistor disposed on the base layer; a capacitor electrically connected to the second thin film transistor; and a light emitting element electrically connected to the second thin film transistor.
Abstract:
A display device includes a substrate including a display area and a peripheral area outside the display area. A circuit unit is disposed in the display area and includes a semiconductor layer. An insulating layer is on the semiconductor layer. A conductive layer is connected to the semiconductor layer through a contact hole in the insulating layer. The conductive layer includes an underlayer including a metal nitride including a first metal. A display element is disposed on the circuit unit and includes a pixel electrode electrically connected to the conductive layer. A connection layer is disposed under the conductive layer. The connection layer corresponds to the contact hole and includes a second metal.
Abstract:
A display device includes a first signal line including a first layer disposed on a substrate and containing aluminum (Al), a second layer disposed on the first layer and containing titanium nitride (TiNx), and a third layer disposed on the second layer and containing titanium (Ti), a second signal line crossing the first signal line, a first transistor including a first gate electrode connected to the first signal line and a first source electrode connected to the second signal line, and an organic light emitting diode disposed in a display area of the substrate to generate light corresponding to a data signal applied to the second signal line.
Abstract:
A light-emitting device may include a first electrode, a second electrode, and a light-emitting layer therebetween. The first electrode may include a reflection layer and a metal oxide layer provided on the reflection layer. The metal oxide layer may be provided between the reflection layer and the light-emitting layer. The metal oxide layer may include molybdenum dioxide and an oxide of a group-V element, and a content of the group-V element to a total amount of the metal oxide layer may range from 2 at % to 10 at.
Abstract:
Provided is an organic light-emitting display apparatus including a substrate; a first electrode formed on the substrate; an emission layer formed on the first electrode; and a second electrode formed on the emission layer, wherein the first electrode includes a first layer including silver (Ag); and a second layer disposed on the first layer and comprising oxide of non-silver metal.
Abstract:
A display device includes an active layer in a display area, a first gate insulation layer on the active layer, a first gate line on the first gate insulation layer in the display area, a first signal line in the same layer as the first gate line in a non-display area and including the same material as that of the first gate line including molybdenum, a second gate insulation layer on the first gate line and the first signal line, a second gate line on the second gate insulation layer in the display area, and a second signal line in the same layer as the second gate line in the non-display area and including the same material as that of the second gate line including aluminum or an aluminum alloy. A width of the first signal line is greater than a width of the second signal line.
Abstract:
A display apparatus includes: a first and second sub-pixel electrodes spaced apart from each other; a subpixel-defining layer covering edges of the first and second sub-pixel electrodes; a first stack including a first emission layer and a first opposite electrode, on the subpixel-defining layer, and overlapping the first sub-pixel electrode; a second stack including a second emission layer and a second opposite electrode, on the subpixel-defining layer, and overlapping the second sub-pixel electrode; a first encapsulation layer covering each of edges of the first stack and edges of the second stack, and including first openings overlapping each of the first stack and the second stack, and a second opening between the first stack and the second stack; and a common electrode on the first encapsulation layer and electrically connected to the first opposite electrode of the first stack and the second opposite electrode of the second stack.
Abstract:
A display panel includes: a base layer; a signal line disposed on the base layer, the signal line including: a first layer including aluminum; and a second layer directly disposed on the first layer, the second layer including a niobium-titanium alloy; a first thin film transistor connected to the signal line; a second thin film transistor disposed on the base layer; a capacitor electrically connected to the second thin film transistor; and a light emitting element electrically connected to the second thin film transistor.