Abstract:
A display panel includes a base layer, a signal line which is disposed on the base layer and includes a first layer including aluminum and a second layer disposed directly on the first layer and consisting of niobium, a first thin film transistor connected to the signal line, a second thin film transistor disposed on the base layer, a capacitor electrically connected to the second thin film transistor, and a light emitting element electrically connected to the second thin film transistor.
Abstract:
A display panel includes a substrate including a component area, a display area at least partially surrounding the component area, and a first non-display area at least partially surrounding the display area. A first wiring is in the display area and extends in a first direction to face the component area. A second wiring is in the display area and extends in the first direction to face the component area. The second wiring is spaced apart from the first wiring with the component area therebetween. A pixel circuit is connected to one of the first and second wirings and includes at least one thin-film transistor. A display element is connected to the pixel circuit. A cross-sectional area of the first wiring crossing in a second direction that is perpendicular to the first direction is different from a cross-sectional area of the second wiring crossing in the second direction.
Abstract:
A reflective electrode having high heat resistance, which may include a reflective layer including aluminum (Al), iron (Fe), and vanadium (V), is disclosed. A content of the iron in the reflective layer may be 0.5 atomic % or less, based on the total number of atoms of the reflective layer.
Abstract:
Provided is a method for fabricating an array substrate. The method for fabricating the array substrate includes forming a semiconductor layer on a substrate, forming a gate electrode which is insulated from the semiconductor layer, forming source and drain electrodes which are insulated from the gate electrode and connected to the semiconductor layer, and forming a pixel electrode connected to the drain electrode. Here, at least one of the forming of the gate electrode, the forming of the source and drain electrodes, and the forming of the pixel electrode includes forming a conductive layer on the substrate, cooling the substrate on which the conductive layer is formed to a temperature of no greater than about 0° C., heating the cooled substrate, and patterning the conductive layer.
Abstract:
A display device includes an active layer in a display area, a first gate insulation layer on the active layer, a first gate line on the first gate insulation layer in the display area, a first signal line in the same layer as the first gate line in a non-display area and including the same material as that of the first gate line including molybdenum, a second gate insulation layer on the first gate line and the first signal line, a second gate line on the second gate insulation layer in the display area, and a second signal line in the same layer as the second gate line in the non-display area and including the same material as that of the second gate line including aluminum or an aluminum alloy. A width of the first signal line is greater than a width of the second signal line.
Abstract:
A display panel includes: a base layer; a signal line disposed on the base layer, the signal line including: a first layer including aluminum; and a second layer directly disposed on the first layer, the second layer including a niobium-titanium alloy; a first thin film transistor connected to the signal line; a second thin film transistor disposed on the base layer; a capacitor electrically connected to the second thin film transistor; and a light emitting element electrically connected to the second thin film transistor.
Abstract:
A display device includes an active layer in a display area, a first gate insulation layer on the active layer, a first gate line on the first gate insulation layer in the display area, a first signal line in the same layer as the first gate line in a non-display area and including the same material as that of the first gate line including molybdenum, a second gate insulation layer on the first gate line and the first signal line, a second gate line on the second gate insulation layer in the display area, and a second signal line in the same layer as the second gate line in the non-display area and including the same material as that of the second gate line including aluminum or an aluminum alloy. A width of the first signal line is greater than a width of the second signal line.
Abstract:
A display device includes a base substrate, a buffer layer disposed on the base substrate, an active layer disposed on the buffer layer, a first gate insulation layer disposed on the active layer, a first conductive layer disposed on the first gate insulation layer and which is a single-layer including an aluminum alloy, a second gate insulation layer disposed on the first conductive layer, a second conductive layer disposed on the second gate insulation layer and which is a single-layer including an aluminum alloy, an insulation interlayer disposed on the second conductive layer, and a third conductive layer disposed on the insulation interlayer, directly contacting the first conductive layer through a first gate contact hole defined in the insulation interlayer and the second gate insulation layer, and directly contacting the second conductive layer through a second gate contact hole defined in the insulation interlayer.
Abstract:
A display panel includes a pixel defining layer in which a light emitting opening is defined, a barrier wall which is on the pixel defining layer and electrically conductive, the barrier wall including a first lower layer which is electrically conductive, a first upper layer which faces the first lower layer and is electrically conductive, a second lower layer between the first lower layer and the first upper layer, the second lower layer defining an opening therein which is adjacent to the light emitting opening, and the first upper layer electrically connected to the first lower layer through the opening of the second lower layer, and a light emitting element including a first electrode, an emission pattern and a second electrode in the light emitting opening, and the second electrode contacting the first lower layer of the barrier wall.
Abstract:
A display apparatus includes: a substrate comprising a display area and a peripheral area outside the display area; a display element on the display area; and a pad on the peripheral area and comprising a main metal layer and a protective metal layer on the main metal layer and comprising molybdenum (Mo), titanium (Ti), and nickel (Ni).