Abstract:
A facial expression recognition method includes actuating a processor to acquire an input image including an object; and identifying a facial expression intensity of the object from the input image based on a facial expression recognition model.
Abstract:
A method to analyze a facial image includes: inputting a facial image to a residual network including residual blocks that are sequentially combined and arranged in a direction from an input to an output; processing the facial image using the residual network; and acquiring an analysis map from an output of an N-th residual block among the residual blocks using a residual deconvolution network, wherein the residual network transfers the output of the N-th residual block to the residual deconvolution network, and N is a natural number that is less than a number of all of the residual blocks, and wherein the residual deconvolution network includes residual deconvolution blocks that are sequentially combined, and the residual deconvolution blocks correspond to respective residual blocks from a first residual block among the residual blocks to the N-th residual block.
Abstract:
A lightened neural network method and apparatus. The neural network apparatus includes a processor configured to generate a neural network with a plurality of layers including plural nodes by applying lightened weighted connections between neighboring nodes in neighboring layers of the neural network to interpret input data applied to the neural network, wherein lightened weighted connections of at least one of the plurality of layers includes weighted connections that have values equal to zero for respective non-zero values whose absolute values are less than an absolute value of a non-zero value. The lightened weighted connections also include weighted connections that have values whose absolute values are no greater than an absolute value of another non-zero value, the lightened weighted connections being lightened weighted connections of trained final weighted connections of a trained neural network whose absolute maximum values are greater than the absolute value of the other non-zero value.
Abstract:
A user authentication method includes receiving a first input image including information on a first modality; receiving a second input image including information on a second modality; determining at least one first score by processing the first input image based on at least one first classifier, the at least one first classifier being based on the first modality; determining at least one second score by processing the second input image based on at least one second classifier, the at least one second classifier being based on the second modality; and authenticating a user based on the at least one first score, the at least one second score, a first fusion parameter of the at least one first classifier, and a second fusion parameter of the at least one second classifier.
Abstract:
At least one example embodiment discloses an image feature extracting method. The method includes determining a probabilistic model based on pixel values of pixels in a kernel, determining image feature information of a current pixel of the pixels in the kernel and determining whether to change the image feature information of the current pixel based on a random value and a probability value of the current pixel, the probability value being based on the probabilistic model.
Abstract:
Disclosed is a face verification method and apparatus. The method including analyzing a current frame of a verification image, determining a current frame state score of the verification image indicating whether the current frame is in a state predetermined as being appropriate for verification, determining whether the current frame state score satisfies a predetermined validity condition, and selectively, based on a result of the determining of whether the current frame state score satisfies the predetermined validity condition, extracting a feature from the current frame and performing verification by comparing a determined similarity between the extracted feature and a registered feature to a set verification threshold.
Abstract:
A liveness test method and apparatus is disclosed. The liveness test method includes detecting a face region in an input image for a test target, implementing a first liveness test to determine a first liveness value based on a first image corresponding to the detected face region, implementing a second liveness test to determine a second liveness value based on a second image corresponding to a partial face region of the detected face region, implementing a third liveness test to determine a third liveness value based on an entirety of the input image or a full region of the input image that includes the detected face region and a region beyond the detected face region, and determining a result of the liveness test based on the first liveness value, the second liveness value, and the third liveness value.
Abstract:
A neural network recognition method includes obtaining a first neural network that includes layers and a second neural network that includes a layer connected to the first neural network, actuating a processor to compute a first feature map from input data based on a layer of the first neural network, compute a second feature map from the input data based on the layer connected to the first neural network in the second neural network, and generate a recognition result based on the first neural network from an intermediate feature map computed by applying an element-wise operation to the first feature map and the second feature map.
Abstract:
Face recognition of a face, to determine whether the face correlates with an enrolled face, may include generating a personalized three-dimensional (3D) face model based on a two-dimensional (2D) input image of the face, acquiring 3D shape information and a normalized 2D input image of the face based on the personalized 3D face model, generating feature information based on the 3D shape information and pixel color values of the normalized 2D input image, and comparing the feature information with feature information associated with the enrolled face. The feature information may include first and second feature information generated based on applying first and second deep neural network models to the pixel color values of the normalized 2D input image and the 3D shape information, respectively. The personalized 3D face model may be generated based on transforming a generic 3D face model based on landmarks detected in the 2D input image.
Abstract:
A fingerprint recognition method includes determining a code corresponding to a query image based on features of blocks in the query image, obtaining information corresponding to the determined code from a lookup table, and verifying the query image based on the obtained information.