Abstract:
A magnetic cooling apparatus having an improved structure in which effective heat exchange may be performed by a heat transfer fluid is provided. The magnetic cooling apparatus includes a magnetic regenerator allowing a heat transfer fluid to pass therethrough and a magnetocaloric material, a magnet to apply a magnetic field to the magnetic regenerator, and a high temperature heat exchanger allowing heat to be dissipated by the heat transfer fluid containing heat received from the magnetic regenerator. The magnetic cooling apparatus includes a low temperature heat exchanger allowing heat to be absorbed by the heat transfer fluid, a pipe to connect the magnetic regenerator, high temperature heat exchanger and low temperature heat exchanger such that the heat transfer fluid circulates through the magnetic regenerator, high temperature heat exchanger and low temperature heat exchanger, and a fluid transport unit to circulate or reciprocate the heat transfer fluid.
Abstract:
An induction heating fusing device and method of an image forming apparatus including: a pressure roller; a heating element that forms a fusing nip together with the pressure roller and is rotatable; an inductor that is installed in a rotation axis direction on the outer circumference surface of the heating element, includes a main coil and a plurality of control coils located on the main coil, and inductively heats the heating element; and a controller that selectively drives at least one of the plurality of control coils depending on the width of a printing paper passing though the fusing nip, and controls the main coil and the plurality of control coils so that a current direction of the main coil and a current direction of the plurality of control coils become the same as or opposite to each other depending on the width of the printing paper.
Abstract:
A magnetic cooling apparatus including a plurality of magnetic regenerators including a plurality of magnetocaloric materials to emit heat when magnetized and to absorb heat when demagnetized. The magnetic regenerators are rotatably disposed on a circumference having a predetermined radius, at least one coil is disposed on the circumference and coupled to the magnetic regenerators, and a plurality of permanent magnets is provided inside and outside the circumference to generate a magnetic field to magnetize or demagnetize the magnetic regenerators. The at least one coil interacts with the magnetic field generated by the permanent magnets to rotate the magnetic regenerators. The coil interacting with the magnetic field to magnetize or demagnetize the magnetic regenerators is coupled to the magnetic regenerators such that the magnetic regenerators reciprocate or rotate, thereby minimizing a size of the magnetic cooling apparatus, relative to the use of a motor. In addition, a member to switch a channel of a heat transfer fluid directly performs heat transfer between the heat transfer fluid and an external fluid, thereby minimizing heat loss.
Abstract:
An induction heating type fusing device and an image forming apparatus including the fusing device. The fusing device includes a magnetic flux generator and a compressing roller outside a fusing belt, first and second fusing rollers and a nip guide inside the fusing belt. The compressing roller compresses against the first and second fusing rollers and the nip guide to form nips, while the fusing belt is disposed between the compressing roller and the first and second fusing rollers and the nip guide.