Abstract:
A hollow shielding structure for different types of circuit elements is provided. The hollow shielding structure includes at least one element mounted on a printed circuit board (PCB), a shield dam surrounding the at least one element, and a shield cover is configured to be electrically coupled to an upper portion of the shield dam and cover the at least one element, with a gap formed between the at least one element and the shield cover.
Abstract:
An electromagnetic interference (EMI) shielding structure and a manufacturing method thereof are provided. The EMI shielding structure includes a shielding dam provided on a printed circuit board, the shielding dam forming a closed loop that defines a periphery of adjacent shielding regions of the printed circuit board; an insulating member that is provided on the adjacent shielding regions within the shielding dam, the insulating member covering circuit devices provided in the adjacent shielding regions; and a shielding member that covers an upper surface of the insulating member, wherein the shielding dam includes a border portion surrounding the adjacent shielding regions, and a partition portion disposed between the adjacent shielding regions and within the border portion.
Abstract:
An EMI shielding structure includes a shielding pad surrounding at least one circuit component mounted on a printed circuit board and grounded to a ground pad disposed on the printed circuit board; and a shield can configured to cover the at least one circuit component, wherein a portion of the shield can is attached to the shielding pad.
Abstract:
Disclosed herein is a refrigeration cycle includes a first refrigerant circuit configured to cause a refrigerant ejected from a compressor to flow through a condenser, an ejector, a first evaporator, and a second evaporator and flow back to the compressor; a second refrigerant circuit configured to cause the refrigerant to bypass the first evaporator in the first refrigerant circuit; and a third refrigerant circuit branching at a junction provided at a downstream end of the condenser from at least one of the first refrigerant circuit and the second refrigerant circuit, and configured to cause the refrigerant to flow through an expansion device and a third evaporator and flow to the ejector. By such configuration, a coefficient of performance (COP) of a refrigeration cycle may be improved and an ejector may be used to improve energy efficiency.
Abstract:
The apparatus includes a heating roller that generates heat for melting toner attached to a printing medium; a first induction coil that is disposed outside the heating roller and heats the heating roller by using induced current generated according to current flowing through the first induction coil; two second induction coils that are disposed at upper portions of both ends of the first induction coil and heat the heating roller by using induced current generated according to current flowing through the two second induction coils; a power supply unit that supplies current to the first induction coil and the two second induction coils; and a control unit that controls the power supply unit to supply current flowing in the same direction or different directions to the first induction coil and the second induction coils according to the size of paper fed into the heating roller.
Abstract:
An object forming apparatus and a controlling method thereof are provided. The object forming apparatus includes an injector configured to inject an object forming material based on object data, a base part in which an object is formed through stacking of the injected object forming material, a sensor configured to detect a height of the object stacked on the base part, and a controller configured to control the injector based on a signal output from the sensor.
Abstract:
An electronic device having an antenna element is provided. The electronic device includes a printed circuit board on which a plurality of components are mounted, at least one antenna element mounted on the printed circuit board, an insulating dam formed on the printed circuit board and configured to surround the at least one antenna element, and a dielectric part configured to fill an inside of the insulating dam and to support the at least one antenna element.
Abstract:
A hollow shielding structure for different types of circuit elements is provided. The hollow shielding structure includes at least one element mounted on a printed circuit board (PCB), a shield dam surrounding the at least one element, and a shield cover is configured to be electrically coupled to an upper portion of the shield dam and cover the at least one element, with a gap formed between the at least one element and the shield cover.
Abstract:
A hollow shielding structure for different types of circuit elements is provided. The hollow shielding structure includes at least one element mounted on a printed circuit board (PCB), a shield dam surrounding the at least one element, and a shield cover is configured to be electrically coupled to an upper portion of the shield dam and cover the at least one element, with a gap formed between the at least one element and the shield cover.
Abstract:
A multi-color ink for 3D printing, a 3D printer, and a method of controlling the 3D printer are provided. The multi-color ink for 3D printing including a first ink composition that includes a photocurable material, a photoinitiator configured to cure the photocurable material, a first colorant, and an anti-intercolor bleed agent configured to prevent intercolor bleeding occurring when the plurality of ink compositions come into contact with each other, and a second ink composition that includes a photocurable material, a photoinitiator configured to cure the photocurable material, and a second colorant having an acid moiety involved in a reaction with the anti-intercolor bleed agent to cause aggregation. The multi-color ink for 3D printing may enable a clear image by inhibiting intercolor bleeding that occurs when ink compositions with different colors are printed to be adjacent to each other before curing during 3D printing.