Abstract:
One embodiment provides a method comprising receiving general private data identifying at least one type of privacy-sensitive data to protect, collecting at least one type of real-time data, and determining an inference privacy risk level associated with transmitting the at least one type of real-time data to a second device. The inference privacy risk level indicates a degree of risk of inferring the general private data from transmitting the at least one type of real-time data. The method further comprises distorting at least a portion of the at least one type of real-time data based on the inference privacy risk level before transmitting the at least one type of real-time data to the second device.
Abstract:
An accurate distance between two devices can be determined in continuous and secure manner using modulated audible signals containing time-based information. This calculated distance can be used to lock and unlock one of the two devices such that if one of the devices, such as a smart phone or smart watch, is beyond a pre-configured distance from the other device, such as a laptop or tablet, the other device locks and may display a message to the user. The modulated messages contain time difference data of audible signal emission and receiving times which are used by each device to calculate an accurate estimate of the distance between the two devices.
Abstract:
An electronic device including a deep memory model includes at least one memory and at least one processor coupled to the at least one memory. The at least one processor is configured to receive input data to the deep memory model. The at least one processor is also configured to extract a history state of an external memory coupled to the deep memory model based on the input data. The at least one processor is further configured to update the history state of the external memory based on the input data. In addition, the at least one processor is configured to output a prediction based on the extracted history state of the external memory.
Abstract:
An apparatus, method, and computer readable medium for management of infinite data streams. The apparatus includes a memory that stores streaming data with a data set and a processor operably connected to the memory. The processor transforms the data set to a second data set. To transform the data set, the processor determines whether a difference level exceeds a threshold, and transforms the data set by adding a noise when the difference level exceeds the threshold. When the difference level does not exceed the threshold, the processor determines whether a retroactive count is greater than a threshold, transforms the data set by adding a second noise when the retroactive count is greater than the threshold, and transforms the data set by adding a third noise when the retroactive count is not greater than the threshold. The processor transmits the second data set to a data processing system for further processing.
Abstract:
A computing system includes: a communication unit configured to access a target account including a feature; a control unit, coupled to the communication unit, configured to: calculate a comparison result based on the feature, determine an anonymity threshold for conforming the target account with a comparison account, and determine the feature for the target account based on the comparison result and the anonymity threshold for displaying on a device.
Abstract:
A method includes obtaining, using at least one processing device, noisy speech signals and extracting, using the at least one processing device, acoustic features from the noisy speech signals. The method also includes receiving, using the at least one processing device, a predicted speech mask from a speech mask prediction model based on a first acoustic feature subset and receiving, using the at least one processing device, a predicted noise mask from a noise mask prediction model based on a second acoustic feature subset. The method further includes providing, using the at least one processing device, predicted speech features determined using the predicted speech mask and predicted noise features determined using the predicted noise mask to a filtering mask prediction model. In addition, the method includes generating, using the at least one processing device, a clean speech signal using a predicted filtering mask output by the filtering mask prediction model.
Abstract:
A method includes: receiving one or more training text sentences; generating one or more training vectors based on inputting the one or more training sentences input into a text encoder, the one or more training vectors corresponding to one or more operations that an electronic device is configured to perform; generating one or more speech vectors based on one or more speech utterances input into a speech encoder; generating a similarity matrix that compares each of the one or more training vectors with each of the one or more speech vectors; and updating at least one of the text encoder and the speech encoder based on the similarity matrix.
Abstract:
In one embodiment, a method includes accessing an image and a natural-language question regarding the image and extracting, from the image, a first set of image features at a first level of granularity and a second set of image features at a second level of granularity. The method further includes extracting, from the question, a first set of text features at the first level of granularity and a second set of text features at the second level of granularity; generating a first output representing an alignment between the first set of image features and the first set of text features; generating a second output representing an alignment between the second set of image features and the second set of text features; and determining an answer to the question based on the first output and the second output.
Abstract:
Provided is a method and apparatus for obtaining a foreground image from an input image containing the foreground object in a scene. Embodiments use multi-scale convolutional attention values, one or more hamburger heads and one or more multilayer perceptrons to obtain a segmentation map of the input image. In some embodiments, progressive segmentation is applied to obtain the segmentation map.
Abstract:
A method includes receiving an audio input and generating a noisy time-frequency representation based on the audio input. The method also includes providing the noisy time-frequency representation to a noise management model trained to predict a denoising mask and a signal presence probability (SPP) map indicating a likelihood of a presence of speech. The method further includes determining an enhanced spectrogram using the denoising mask and the noisy time-frequency representation. The method also includes providing the enhanced spectrogram and the SPP map as inputs to a keyword classification model trained to determine a likelihood of a keyword being present in the audio input. In addition, the method includes, responsive to determining that a keyword is in the audio input, transmitting the audio input to a downstream application associated with the keyword.