Abstract:
A display panel and a display apparatus are provided. The display panel includes a display area, a bezel area and a hole area. The bezel area includes an inner bezel area surrounding the hole area and an outer bezel area surrounding the display area, and the display area surrounds the hole area and is disposed between the inner bezel area and the outer bezel area. The display panel also includes a substrate layer, a light-emitting layer, an encapsulation layer and a touch layer that are sequentially stacked; at least two detection soldering pads disposed in the outer bezel area; and a detection line including at least one first detection segment disposed in the inner bezel area, at least two second detection segments disposed in the display area and at least two third detection segments in outer bezel area.
Abstract:
Embodiments of the present disclosure provide a display panel, a control method and a display device, which relate to the field of force touch display technologies, and can improve sensitivity of the force sensing unit. The display panel includes: a plurality of force sensing branches connected in parallel; a plurality of force sensing unit sets corresponding to the plurality of force sensing branches; and a plurality of switch units corresponding to the plurality of force sensing branches; wherein each of the force sensing unit sets includes one or more force sensing unit, each force sensing unit includes two input ends, the input ends of the force sensing units in each of the force sensing unit sets are mutually connected in series or in parallel in a corresponding force sensing branch; and wherein the switch units are arranged in a corresponding one force sensing branches in series.
Abstract:
A display panel and an electronic device are provided. The display panel includes: an array substrate; a plurality of organic light emitting units disposed on the array substrate; at least one fingerprint identification unit located in a display region at a side close to the array substrate of the organic light emitting units. The fingerprint identification unit performs fingerprint identification according to light rays reflected on the fingerprint identification unit by a touch body. Each organic light emitting unit includes a red organic light emitting unit, a green organic light emitting unit and a blue organic light emitting unit. In a fingerprint identification phase, the red/green organic light emitting unit emits light to be a light source for the fingerprint identification unit. Compared with the blue organic light emitting unit, the red/green organic light emitting unit has a smaller transparent area towards a side opposite to a display side.
Abstract:
A touch control display panel and a touch control display device are provided. The touch control display panel comprises a substrate including a display region and a non-display region; an organic light-emitting structure; a thin film encapsulation layer having a first side facing the substrate; a first retaining wall; first and second touch control electrodes; first and second touch control lines disposed in the non-display region; and conductive leads disposed on the first side of the thin film encapsulation layer. At least one first touch control line steps across the first retaining wall to be electrically connected to a corresponding conductive lead, and further electrically connected to a driving chip or a flexible printed circuit disposed in a first non-display region through the corresponding conductive lead. A connection region of the at least one first touch control line and the corresponding conductive lead is arranged outside the first retaining wall.
Abstract:
Disclosed are an organic light-emitting display panel and an electronic device. The organic light-emitting display panel comprises a first substrate; the first substrate comprises a plurality of pressure-sensitive detection structures and a plurality of light-sensitive identification structures provided in an array, the pressure-sensitive detection structure comprises a semiconductor material film, the light-sensitive identification structure comprises a light-sensitive identification switch, the light-sensitive identification switch comprises a first active layer, and the semiconductor material film and the first active layer are provided on the same layer
Abstract:
Disclosed are a display panel and a touch display device. The display panel comprises: a first substrate and a second substrate provided opposite to each other, which are adhered to each other via a sealant; a plurality of pressure sensors, which are provided on one side of the first substrate facing the second substrate or on one side of the second substrate facing the first substrate, wherein, the pressure sensor comprises plurality of resistors, and a projection of the sealant in a direction vertical to the display panel covers at least one resistor in the pressure sensor. In the embodiments of the disclosure, the projection of the sealant adhering the first substrate to the second substrate in the direction vertical to the display panel covers at least one resistor in the pressure sensor.
Abstract:
The disclosure provides an array substrate and a color filter substrate of a capacitive touch control screen, a touch control display device and a method for driving the touch control display device, so as to achieve the self-capacitive multi-point touch. The array substrate of the capacitive touch control screen includes: a peripheral area and a display area; a plurality of pixel units with pixel electrodes arranged in the display area; a plurality of touch control electrodes; and touch control electrode lead wires connected with a module configured to detect a touch control signal, wherein each of the touch control electrodes is connected respectively with one of the touch control electrode lead wires.
Abstract:
One inventive aspect is an array substrate, which includes a plurality of touch leads, a common electrode layer, and a drive circuit. The common electrode layer is divided into a plurality of columns of self-capacitive electrodes, which are electronically connected to the drive circuit through the touch leads. The array substrate also includes a plurality of pixel units. Each touch lead is electronically connected to the self-capacitive electrode corresponding to the touch lead via a first via hole. At least one touch lead is parallel to and cross over one column of the self-capacitive electrodes. In a direction perpendicular to the array substrate, a projection of the self-capacitive electrode covers projections of a plurality of pixel units. In addition, along a direction of the touch leads, an interval between two adjacent first via holes is greater than or equal to a length of two pixel units.
Abstract:
Disclosed is a folding display device comprising: a display panel. and a folding shaft. The display play can be configured to be folded along the display device. The folding shaft can be configured to partition the display panel into a first display portion and a second display portion, and a folding state detecting electrode is a capacitive detecting electrode and is provided on the first display portion and/or the second display portion. According to the disclosure, the problem of the prior art that a detecting unit in a folding display device is difficult to determine the specific degree of folding of the folding display device may be solved. Thereby, the degree of folding of a folding display device can be accurately detected.
Abstract:
An embodiment discloses an integrated electromagnetic and capacitive touch substrate, and a touch display panel. The touch substrate includes: a substrate; and a plurality of driving electrodes, a plurality of sensing electrodes, and a plurality of first coils, arranged on the substrate in the same layer, wherein the plurality of driving electrodes and sensing electrodes are arranged alternately in a first direction; and the plurality of first coils are arranged in the first direction, and each of the first coils surrounds at least one of the driving electrodes and/or the sensing electrodes.