Antenna Array With Selectable Horizontal, Vertical or Circular Polarization

    公开(公告)号:US20220416445A1

    公开(公告)日:2022-12-29

    申请号:US17356766

    申请日:2021-06-24

    Abstract: A system and method for selecting a polarization for a particular antenna in an antenna array is disclosed. The system comprises an antenna array, wherein each antenna is adapted to receive and transmit horizontally and vertically polarized signals. The system also includes a switching network that is adapted to select the vertical or horizontal polarized signal for each antenna in the antenna array. The switching network also allows selection of a circular polarized signal from one or more of the antenna elements in the antenna array. This allows the AoX to be more accurate, as it is able to receive horizontally and vertically polarized signals, rather than just circular polarized signals, thereby improving its accuracy. The ability to receive circular polarized signals may be beneficial during reference periods to acquire the proper gain and frequency.

    Frequency selective attenuator for optimized radio frequency coexistence

    公开(公告)号:US11463064B2

    公开(公告)日:2022-10-04

    申请号:US16706433

    申请日:2019-12-06

    Abstract: A wireless transceiver including a receiver circuit coupled to an RF transceiver node, a tunable notch filter coupled between the RF transceiver node and a reference node, and a controller that programs the tunable notch filter with a selected blocker frequency and that selectively enables the tunable notch filter to attenuate at least one blocker signal. The tunable notch filter may include a variable capacitor and an inductor coupled in series between the RF transceiver node and ground. The inductor of the tunable notch filter may include a bondwire coupled between a semiconductor die and a semiconductor package. The inductance may include a physical inductor mounted on the package or a printed circuit board. The tunable notch filter may be enabled by a switch selectively coupling the filter to either the RF transceiver node or ground. The variable capacitor may be digitally programmed with digital values stored in a memory.

    Dynamically reconfigurable frequency selective attenuator for radio frequency receiver front end

    公开(公告)号:US11387857B2

    公开(公告)日:2022-07-12

    申请号:US16998740

    申请日:2020-08-20

    Abstract: A wireless device including a receiver circuit coupled to a radio frequency receiver node, a frequency selective attenuator including an inductor and a first capacitor coupled in series to the radio frequency receiver node, and a second capacitor coupled in parallel with the first capacitor. The first capacitor has a first capacitance based on a blocker frequency and the second capacitor has a second capacitance that linearizes the frequency selective attenuator. A method of linearizing a frequency selective attenuator including detecting presence of a blocker signal, activating and programming a capacitor of the frequency selective attenuator to reduce a strength of the blocker signal, determining a frequency difference between the blocker signal and a receive frequency, and coupling a second capacitor to the frequency selective attenuator to linearize the frequency selective attenuator when the frequency difference is no more than an attenuation threshold.

    DYNAMICALLY RECONFIGURABLE FREQUENCY SELECTIVE ATTENUATOR FOR RADIO FREQUENCY RECEIVER FRONT END

    公开(公告)号:US20210175917A1

    公开(公告)日:2021-06-10

    申请号:US16998740

    申请日:2020-08-20

    Abstract: A wireless device including a receiver circuit coupled to a radio frequency receiver node, a frequency selective attenuator including an inductor and a first capacitor coupled in series to the radio frequency receiver node, and a second capacitor coupled in parallel with the first capacitor. The first capacitor has a first capacitance based on a blocker frequency and the second capacitor has a second capacitance that linearizes the frequency selective attenuator. A method of linearizing a frequency selective attenuator including detecting presence of a blocker signal, activating and programming a capacitor of the frequency selective attenuator to reduce a strength of the blocker signal, determining a frequency difference between the blocker signal and a receive frequency, and coupling a second capacitor to the frequency selective attenuator to linearize the frequency selective attenuator when the frequency difference is no more than an attenuation threshold.

Patent Agency Ranking