Scalable lookup-driven entity extraction from indexed document collections
    31.
    发明申请
    Scalable lookup-driven entity extraction from indexed document collections 有权
    从索引文档集合提取可扩展的查找驱动实体

    公开(公告)号:US20090319500A1

    公开(公告)日:2009-12-24

    申请号:US12144675

    申请日:2008-06-24

    IPC分类号: G06F17/30 G06F7/06 G06F17/27

    CPC分类号: G06F17/30011 G06F17/278

    摘要: A set of documents is filtered for entity extraction. A list of entity strings is received. A set of token sets that covers the entity strings in the list is determined. An inverted index generated on a first set of documents is queried using the set of token sets to determine a set of document identifiers for a subset of the documents in the first set. A second set of documents identified by the set of document identifiers is retrieved from the first set of documents. The second set of documents is filtered to include one or more documents of the second set that each includes a match with at least one entity string of the list of entity strings. Entity recognition may be performed on the filtered second set of documents.

    摘要翻译: 过滤一组文档进行实体提取。 接收到实体字符串的列表。 确定一组涵盖列表中的实体字符串的令牌集。 使用该组令​​牌查询在第一组文档上生成的反向索引,以确定第一组中的文档的子集的一组文档标识符。 从第一组文档中检索由该组文档标识符标识的第二组文档。 第二组文档被过滤以包括第二组的一个或多个文档,每个文档包括与实体字符串列表的至少一个实体字符串的匹配。 可以对经过滤的第二组文件执行实体识别。

    Progressive spatial searching using augmented structures
    33.
    发明授权
    Progressive spatial searching using augmented structures 有权
    使用增强结构的渐进空间搜索

    公开(公告)号:US08930391B2

    公开(公告)日:2015-01-06

    申请号:US12981082

    申请日:2010-12-29

    IPC分类号: G06F17/30 G01C21/36

    摘要: A location associated with a user of a computing device and a prefix portion of an input string may be received as one or more successive characters of the input string are provided by the user via the computing device. A list of suggested items may be obtained based on a function of respective recommendation indicators and proximities of the items to the location in response to receiving the prefix portion, and based on partially traversing a character string search structure having a plurality of non-terminal nodes augmented with bound indicators associated with spatial regions. The list of suggested items and descriptive information associated with each suggested item may be returned to the user, in response to receiving the prefix portion, for rendering an image illustrating indicators associated with the list in a manner relative to the location, as the user provides each successive character of the input string.

    摘要翻译: 当用户通过计算设备提供输入串的一个或多个连续字符时,可以接收与计算设备的用户和输入字符串的前缀部分相关联的位置。 可以基于各个推荐指标的功能和响应于接收前缀部分的到位置的项目的接近度,并且基于部分地遍历具有多个非终端节点的字符串搜索结构来获得所提出的项目的列表 增加与空间区域相关联的绑定指标。 与每个建议项目相关联的建议项目和描述性信息的列表可以响应于接收到前缀部分而被返回给用户,用于以用户提供的方式呈现以相对于位置的方式示出与列表相关联的指示符的图像 输入字符串的每个连续字符。

    Keyword Searching On Database Views
    34.
    发明申请
    Keyword Searching On Database Views 审中-公开
    关键字搜索数据库视图

    公开(公告)号:US20100299367A1

    公开(公告)日:2010-11-25

    申请号:US12469399

    申请日:2009-05-20

    IPC分类号: G06F17/30

    摘要: A keyword search is executed on a view of a database based on a Boolean keyword query. The view includes multiple text columns, and the keyword search is executed on each of the multiple text columns in the view. The output results from the keyword search on each of the text columns include tuple identifiers of one or more relevant tuples and a relevancy score for ranking the results of the keyword query.

    摘要翻译: 在基于布尔关键字查询的数据库视图上执行关键字搜索。 该视图包括多个文本列,并且在视图中的每个多个文本列上执行关键字搜索。 每个文本列上的关键字搜索的输出结果包括一个或多个相关元组的元组标识符和用于对关键字查询的结果进行排名的相关分数。

    Entity augmentation service from latent relational data
    35.
    发明授权
    Entity augmentation service from latent relational data 有权
    潜在关系数据的实体增强服务

    公开(公告)号:US09171081B2

    公开(公告)日:2015-10-27

    申请号:US13413179

    申请日:2012-03-06

    IPC分类号: G06F17/30 G06F7/00

    摘要: The subject disclosure is directed towards providing data for augmenting an entity-attribute-related task. Pre-processing is preformed on entity-attribute tables extracted from the web, e.g., to provide indexes that are accessible to find data that completes augmentation tasks. The indexes are based on both direct mappings and indirect mappings between tables. Example augmentation tasks include queries for augmented data based on an attribute name or examples, or finding synonyms for augmentation. An online query is efficiently processed by accessing the indexes to return augmented data related to the task.

    摘要翻译: 主题公开旨在提供用于增强实体属性相关任务的数据。 在从网络提取的实体属性表上执行预处理,例如,提供可访问以查找完成扩充任务的数据的索引。 索引基于表之间的直接映射和间接映射。 示例增强任务包括基于属性名称或示例的增强数据查询,或查找用于扩充的同义词。 通过访问索引以返回与任务相关的扩充数据,可以有效地处理在线查询。

    Scalable lookup-driven entity extraction from indexed document collections
    36.
    发明授权
    Scalable lookup-driven entity extraction from indexed document collections 有权
    从索引文档集合提取可扩展的查找驱动实体

    公开(公告)号:US08782061B2

    公开(公告)日:2014-07-15

    申请号:US12144675

    申请日:2008-06-24

    IPC分类号: G06F17/30 G06F7/00

    CPC分类号: G06F17/30011 G06F17/278

    摘要: A set of documents is filtered for entity extraction. A list of entity strings is received. A set of token sets that covers the entity strings in the list is determined. An inverted index generated on a first set of documents is queried using the set of token sets to determine a set of document identifiers for a subset of the documents in the first set. A second set of documents identified by the set of document identifiers is retrieved from the first set of documents. The second set of documents is filtered to include one or more documents of the second set that each includes a match with at least one entity string of the list of entity strings. Entity recognition may be performed on the filtered second set of documents.

    摘要翻译: 过滤一组文档进行实体提取。 接收到实体字符串的列表。 确定一组涵盖列表中的实体字符串的令牌集。 使用该组令​​牌查询在第一组文档上生成的反向索引,以确定第一组中的文档的子集的一组文档标识符。 从第一组文档中检索由该组文档标识符标识的第二组文档。 第二组文档被过滤以包括第二组的一个或多个文档,每个文档包括与实体字符串列表的至少一个实体字符串的匹配。 可以对经过滤的第二组文件执行实体识别。

    Entity Augmentation Service from Latent Relational Data
    37.
    发明申请
    Entity Augmentation Service from Latent Relational Data 有权
    潜在关系数据实体增强服务

    公开(公告)号:US20130238621A1

    公开(公告)日:2013-09-12

    申请号:US13413179

    申请日:2012-03-06

    IPC分类号: G06F17/30

    摘要: The subject disclosure is directed towards providing data for augmenting an entity-attribute-related task. Pre-processing is preformed on entity-attribute tables extracted from the web, e.g., to provide indexes that are accessible to find data that completes augmentation tasks. The indexes are based on both direct mappings and indirect mappings between tables. Example augmentation tasks include queries for augmented data based on an attribute name or examples, or finding synonyms for augmentation. An online query is efficiently processed by accessing the indexes to return augmented data related to the task.

    摘要翻译: 主题公开旨在提供用于增强实体属性相关任务的数据。 在从网络提取的实体属性表上执行预处理,例如,提供可访问以查找完成扩充任务的数据的索引。 索引基于表之间的直接映射和间接映射。 示例增强任务包括基于属性名称或示例的增强数据查询,或查找用于扩充的同义词。 通过访问索引以返回与任务相关的扩充数据,可以有效地处理在线查询。

    Finding related entity results for search queries
    38.
    发明授权
    Finding related entity results for search queries 有权
    查找搜索查询的相关实体结果

    公开(公告)号:US08195655B2

    公开(公告)日:2012-06-05

    申请号:US11758024

    申请日:2007-06-05

    IPC分类号: G06F17/30

    CPC分类号: G06F17/278 G06F17/30864

    摘要: Architecture for finding related entities for web search queries. An extraction component takes a document as input and outputs all the mentions (or occurrences) of named entities such as names of people, organizations, locations, and products in the document, as well as entity metadata. An indexing component takes a document identifier (docID) and the set of mentions of named entities and, stores and indexes the information for retrieval. A document-based search component takes a keyword query and returns the docIDs of the top documents matching with the query. A retrieval component takes a docID as input, accesses the information stored by the indexing component and returns the set of mentions of named entities in the document. This information is then passed to an entity scoring and thresholding component that computes an aggregate score of each entity and selects the entities to return to the user.

    摘要翻译: 用于查找网络搜索查询的相关实体的架构。 提取组件将文档作为输入并输出所有实体的所有提及(或出现),例如文档中的人员,组织,位置和产品的名称以及实体元数据。 索引组件采用文档标识符(docID)和命名实体的提及集合,并存储和索引信息进行检索。 基于文档的搜索组件接受关键字查询,并返回与查询匹配的顶级文档的docID。 检索组件将docID作为输入,访问由索引组件存储的信息,并返回文档中命名实体的提及集。 然后将该信息传递给实体计分和阈值组件,该组件计算每个实体的聚合分数,并选择要返回给用户的实体。

    Pushing Search Query Constraints Into Information Retrieval Processing
    39.
    发明申请
    Pushing Search Query Constraints Into Information Retrieval Processing 审中-公开
    将搜索查询约束推送到信息检索处理中

    公开(公告)号:US20110320446A1

    公开(公告)日:2011-12-29

    申请号:US12823124

    申请日:2010-06-25

    IPC分类号: G06F17/30

    CPC分类号: G06F16/90335

    摘要: This patent application relates to interval-based information retrieval (IR) search techniques for efficiently and correctly answering keyword search queries. In some embodiments, a range of information-containing blocks for a search query can be identified. Each of these blocks, and thus the range, can include document identifiers that identify individual corresponding documents that contain a term found in the search query. From the range, a subrange(s) having a smaller number of blocks than the range can be selected. This can be accomplished without decompressing the blocks by partitioning the range into intervals and evaluating the intervals. The smaller number of blocks in the subranges(s) can then be decompressed and processed to identify a doc ID(s) and thus document(s) that satisfies the query.

    摘要翻译: 该专利申请涉及用于有效和正确地回答关键词搜索查询的基于间隔的信息检索(IR)搜索技术。 在一些实施例中,可以识别用于搜索查询的一系列含有信息的块。 这些块中的每个以及因此的范围可以包括识别包含在搜索查询中找到的术语的各个对应文档的文档标识符。 从该范围可以选择具有比该范围少的块数量的子范围。 这可以在不通过将范围划分成间隔并且评估间隔来解压缩块的情况下实现。 然后可以解压缩和处理子范围中较小数量的块,以识别文档ID,从而识别符合查询的文档。

    Finding Related Entities For Search Queries
    40.
    发明申请
    Finding Related Entities For Search Queries 有权
    查找搜索查询的相关实体

    公开(公告)号:US20080306908A1

    公开(公告)日:2008-12-11

    申请号:US11758024

    申请日:2007-06-05

    IPC分类号: G06F17/30

    CPC分类号: G06F17/278 G06F17/30864

    摘要: Architecture for finding related entities for web search queries. An extraction component takes a document as input and outputs all the mentions (or occurrences) of named entities such as names of people, organizations, locations, and products in the document, as well as entity metadata. An indexing component takes a document identifier (docID) and the set of mentions of named entities and, stores and indexes the information for retrieval. A document-based search component takes a keyword query and returns the docIDs of the top documents matching with the query. A retrieval component takes a docID as input, accesses the information stored by the indexing component and returns the set of mentions of named entities in the document. This information is then passed to an entity scoring and thresholding component that computes an aggregate score of each entity and selects the entities to return to the user.

    摘要翻译: 用于查找网络搜索查询的相关实体的架构。 提取组件将文档作为输入并输出所有实体的所有提及(或出现),例如文档中的人员,组织,位置和产品的名称以及实体元数据。 索引组件采用文档标识符(docID)和命名实体的提及集合,并存储和索引信息进行检索。 基于文档的搜索组件接受关键字查询,并返回与查询匹配的顶级文档的docID。 检索组件将docID作为输入,访问由索引组件存储的信息,并返回文档中命名实体的提及集。 然后将该信息传递给实体计分和阈值组件,该组件计算每个实体的聚合分数,并选择要返回给用户的实体。