Abstract:
A watch or movement including a timepiece resonator movement including two RCC flexural pivots mounted in series about an intermediate rotary support and having the same virtual pivot axis, each including two straight flexible strips of the same length, whose clamping points opposite to this pivot axis are at the same distance with respect to this axis, and which define linear directions, forming angles, in pairs, with this virtual pivot axis, whose value expressed in degrees is comprised between: 109.5+5/[(D/L)−(2/3)] and 114.5+5/[(D/L)−(2/3)], or more particularly between 107+5/((D/L)−(2/3)) and 112+5/((D/L)−(2/3)).
Abstract:
A shock absorber device for an arbor of a timepiece element including: a support including a base cup surmounted by a peripheral rim, which is delimited, opposite the cup, by an upper surface, the cup and the rim together defining a housing; a pivot system extending along an arbor, the pivot system being arranged in the housing and including a base including an elastic return mechanism at the periphery thereof, formed by at least one curved arm, including an opening in which is inserted a pivot element configured to cooperate with the arbor. The at least one curved arm is used for locking the pivot system in a bayonet fitting.
Abstract:
A watch includes a pedometer mechanism for estimating a physical activity level. The watch includes at least one moving or pivoting weight arranged to drive a ratchet, an elastic or friction holder for holding the ratchet in position between two movements of the moving or pivoting weight, the ratchet driving a gear train displaying, on a display, a value corresponding, to within a multiplicative factor, to the number of pivoting motions of the ratchet, and/or to the value of the cumulative angular rotation of the ratchet, and the pedometer mechanism includes a limiter only allowing the pivoting of the ratchet from a minimum threshold corresponding to a minimum travel of the weight if the weight is movable or to a minimum angular rotation value of the weight if the weight pivots.
Abstract:
The invention concerns a device for regulating the relative angular speed between a magnetic structure and a resonator magnetically coupled to each other and forming an oscillator which defines a magnetic escapement. The magnetic structure includes at least one annular magnetic path at least partially formed of a magnetic material and the resonator includes at least one element for magnetic coupling to the annular magnetic path, this coupling element being formed of a magnetic material having a physical parameter correlated to the magnetic potential energy of the oscillator. The radial dimension of the annular magnetic path is smaller than a corresponding dimension of the coupling element, and the magnetic material is arranged so that the physical parameter of said magnetic material gradually increases angularly or gradually decreases angularly in order to obtain an angularly extended magnetic potential energy area in each angular period of the annular magnetic path.
Abstract:
The universal timepiece comprises a winter/summer switching mechanism (27, 29, 31, 25, 19, 19H, 19E, 20, 20H, 20E, 21, 21E, 21H, 22, 22E, 22H, 23, 23E, 23H, 11, 11A, 12, 12A, 13, 13A, 14, 14A, 15, 15A, 17) arranged to be driven intermittently by the movement to selectively displace some of the geographic indications carried by the dial (3) by 1/24th of a turn in order to change by one hour the local time associated with these geographic indications during a change from winter time to summer time or from summer time to winter time.
Abstract:
The horological movement includes a mechanical resonator and an escapement including an escapement wheel, which has a plurality of teeth, and an anchor formed by a stick and two arms having respectively two mechanical pallets likely to come into contact, when the anchor is subject to an alternative movement, with any of the teeth according to the angular position of the escapement wheel. To avoid damage to the escapement during rocking of the anchor while the escapement wheel is positioned in an unfavourable angular position, the anchor is arranged, during the rocking of this anchor, to be able to bend being subjected to an elastic deformation. The anchor has an elastic capacity between each of the two mechanical pallets and a fork of the anchor, enabling it to absorb elastically, during the elastic deformation, a maximum mechanical energy that the mechanical resonator can have during the normal functioning of the horological movement.
Abstract:
Inertia mobile component (1) for a horological resonator (100), oscillating about an axis of oscillation (D1), and including at least one magnetic area (10), the total resultant magnetic moment of all of the magnetic areas (10), included in the inertia mobile component (1), is aligned in the direction of the axis of oscillation (D1), this inertia mobile component (1) bearing at least one magnetic compensating element (4), the magnetisation component thereof in a direction perpendicular to the axis of oscillation (D1) can be adjusted in order to obtain a total resultant magnetic moment that is aligned in the direction of the axis of oscillation (D1).
Abstract:
An oscillator includes a resonator, which has an inertial mass returned by an elastic return and carries entry and exit pallets cooperating with teeth of an escape wheel each provided with a magnet. Each pallet includes a magnetic arrangement, with an annular sector, centred on the axis of oscillation of the resonator, defining a first magnetic barrier area extending above and/or below a mechanical pallet-stone of the entry pallet or exit pallet, over the entire length of this mechanical pallet-stone acting as support for the teeth during the supplementary arc, in order to form a magnetic cylinder escapement mechanism.
Abstract:
A mechanical timepiece oscillator includes, between a support and an inertial element, a flexure bearing with flexible strips crossed in projection, including, superposed, an upper level that includes, between an upper support and an upper inertial element, an upper primary strip in a first direction and an upper secondary strip in a second direction, and a lower level that includes, between a lower support and a lower inertial element, a lower primary strip in the first direction and a lower secondary strip in the second direction. The upper level and lower level include, between the support and the upper or respectively lower support, a translational table with an elastic connection along one or two axes of freedom in the oscillation plane, of lower stiffness than that of each flexible strip.
Abstract:
A mechanical timepiece oscillator including, between a first element and a second inertial element, more than two distinct flexible strips returning the inertial element to a rest position in an oscillation plane, wherein the projections of these strips cross each other, at a point, through which passes the axis of pivoting of the second solid inertial element, and the height to thickness aspect ratio is less than 10 for each strip.