摘要:
An electrode for an ignition device is made from a dilute nickel alloy which has improved resistance to high temperature oxidation, sulfidation, corrosive wear, deformation and fracture and includes at least 90% by weight of nickel; zirconium; boron and at least one element from the group consisting of aluminum, magnesium, silicon, chromium, titanium and manganese. The weight ratio of Zr/B may range from about 0.5 to 150, and may include amounts of, by weight of the alloy, 0.05-0.5% zirconium and 0.001-0.01% boron. The oxidation resistance of the alloy may also be improved by the addition of hafnium to the alloy in an amount that is comparable to the amount of zirconium, which may include an amount of, by weight of the alloy, 0.005-0.2% hafnium. Electrodes of dilute nickel alloys which include aluminum and silicon, as well as those which include chromium, silicon, manganese and titanium, are particularly useful as spark plug electrodes. These electrode alloys of the may also include at least one of cobalt, niobium, vanadium, molybdenum, tungsten, copper, iron, carbon, calcium, phosphorus or sulfur as trace elements, generally with specified maximum amounts. The ignition device may be a spark plug which includes a ceramic insulator, a conductive shell, center electrode and ground electrode. The center electrode, ground electrode, or both, may be made from the dilute nickel alloy of the invention. These electrodes may also include a core with thermal conductivity greater than that of the dilute nickel alloy, such as copper or silver or their alloys.
摘要:
An electrode for a spark ignition device, including a spark plug, which includes an alloy consisting essentially of, in weight percent, at least 15% Ni and the balance substantially Pt, and more particularly 15-45% Ni and the balance substantially Pt; 5-35% W, and the balance substantially Pd; and 5-15% Ni, 5-15% Pt, less than 10% Ir, and the balance substantially Pd.
摘要:
An electrode for an ignition device is made from a dilute nickel alloy which has improved resistance to high temperature oxidation, sulfidation, corrosive wear, deformation and fracture and includes at least 90% by weight of nickel; zirconium; boron and at least one element from the group consisting of aluminum, magnesium, silicon, chromium, titanium and manganese. The weight ratio of Zr/B may range from about 0.5 to 150, and may include amounts of, by weight of the alloy, 0.05-0.5% zirconium and 0.001-0.01% boron. The oxidation resistance of the alloy may also be improved by the addition of hafnium to the alloy in an amount that is comparable to the amount of zirconium, which may include an amount of, by weight of the alloy, 0.005-0.2% hafnium. Electrodes of dilute nickel alloys which include aluminum and silicon, as well as those which include chromium, silicon, manganese and titanium, are particularly useful as spark plug electrodes. These electrode alloys of the may also include at least one of cobalt, niobium, vanadium, molybdenum, tungsten, copper, iron, carbon, calcium, phosphorus or sulfur as trace elements, generally with specified maximum amounts. The ignition device may be a spark plug which includes a ceramic insulator, a conductive shell, center electrode and ground electrode. The center electrode, ground electrode, or both, may be made from the dilute nickel alloy of the invention. These electrodes may also include a core with thermal conductivity greater than that of the dilute nickel alloy, such as copper or silver or their alloys.
摘要:
A spark plug having a center electrode and/or a ground electrode with an attached spark portion. The spark portion has a base material and a protective material wherein the base material is highly resistant to spark erosion and the protective material is highly resistant to corrosion.
摘要:
A spark plug includes at least one electrode having a sparking end. The sparking end is formed of a high temperature performance alloy including chromium in an amount of 10.0 weight percent to 60.0 weight percent, palladium in an amount of 0.5 weight percent to 10.0 weight percent, and a balance substantially of at least one of molybdenum and tungsten. The sparking end presents a spark contact surface, and at a temperature of at least 500° C., such as during use of the spark plug in an internal combustion engine, a layer of chromium oxide (Cr2O3) forms at said spark contact surface. The layer of Cr2O3 protects the bulk of the sparking end from the extreme conditions of the combustion chamber and prevents erosion, corrosion, and balling.
摘要翻译:火花塞包括至少一个具有火花端的电极。 火花端由包含10.0重量%至60.0重量%的铬的高温性能合金形成,钯的量为0.5重量%至10.0重量%,余量基本上至少为钼和钨的一种 。 火花端具有火花接触表面,并且在至少500℃的温度下,例如在内燃机中使用火花塞期间,在所述火花接触表面处形成氧化铬(Cr 2 O 3)层。 Cr2O3层可以防止燃烧室的极端条件下火花塞的大部分,并防止腐蚀,腐蚀和球磨。
摘要:
A corona igniter 20 includes an insulator 28 surrounding a central electrode 24 and a shell 30 surrounding the insulator 28. The shell 30 presents a shell gap 38 having a shell gap width ws between a shell lower end 34 and a shell inner surface 90 or shell outer surface 92. The shell 30 has a shell thickness is decreasing toward the shell lower end 34 allowing the shell gap width ws to increase toward the shell lower end 34. The shell gap 38 is open at the shell lower end 34 allowing air to flow therein, and the shell gap width ws is greatest at the shell lower end 34. The increasing shell gap width ws enhances corona discharge 22 along the insulator 28 between the central electrode 24 and shell 30.
摘要:
A corona igniter (20) includes an ignition coil (26) providing a high voltage energy to an electrode. The coil (26) is disposed in a housing (34) and electrically isolated by a coil filler (36) and a capacitance reducing component (38) which together improve energy efficiency of the system. The coil filler (36) includes an insulating resin permeating the coil (26). The capacitance reducing component (38) has a permittivity not greater than 6, for example ambient air, pressurized gas, insulating oil, or a low permittivity solid. The capacitance reducing compound (38) surrounds the coil (26) and other components and fills the remaining housing volume. The coil filler (36) has a filler volume and the capacitance reducing component (38) has a component volume greater than the filler volume.
摘要:
An electrode for a spark ignition device, including a spark plug, which includes an alloy consisting essentially of, in weight percent, at least 15% Ni and the balance substantially Pt, and more particularly 15-45% Ni and the balance substantially Pt; 5-35% W, and the balance substantially Pd; and 5-15% Ni, 5-15% Pt, less than 10% Ir, and the balance substantially Pd.
摘要:
A spark plug (10) having an elongated ceramic insulator (12) includes numerous design features in various strategic locations. At least the ground electrode (26) is fitted with a rimmed, hemispherical metallic sparking tip (56) which controls rogue electrical arcing (62) and facilitates attachment techniques due to increased surface contact with the ground electrode (26). The various features of the spark plug (10) cooperate with one another so that the physical dimensions of the spark plug (10) can be reduced to meet current demands of newer engines without sacrificing mechanical strength or performance.