摘要:
This invention discloses a trigger circuit for an electrostatic discharge (ESD) protection device, the ESD protection device being turned on during an ESD event and being turned off during a normal operation, the trigger circuit comprises a voltage sensing circuit coupled to a bonding pad, the voltage sensing circuit being configured to produce a first predetermined voltage during a ESD event, and to produce a second predetermined voltage complimentary to the first predetermined voltage during a normal operation, and a voltage converting circuit having a positive feedback circuit and coupled between the voltage sensing circuit and the ESD protection device for converting the first predetermined voltage to a third predetermined voltage for turning on the ESD protection device, and for converting the second predetermined voltage to a fourth predetermined voltage for turning off the ESD protection device.
摘要:
This invention discloses a trigger circuit for an electrostatic discharge (ESD) protection device, the ESD protection device being turned on during an ESD event and being turned off during a normal operation, the trigger circuit comprises a voltage sensing circuit coupled to a bonding pad, the voltage sensing circuit being configured to produce a first predetermined voltage during a ESD event, and to produce a second predetermined voltage complimentary to the first predetermined voltage during a normal operation, and a voltage converting circuit having a positive feedback circuit and coupled between the voltage sensing circuit and the ESD protection device for converting the first predetermined voltage to a third predetermined voltage for turning on the ESD protection device, and for converting the second predetermined voltage to a fourth predetermined voltage for turning off the ESD protection device.
摘要:
A liquid phase deposition method involves a reaction mixture composed of a hydrosilicofluoric acid aqueous solution supersaturated with silicon dioxide, and a semiconductor substrate disposed therein. The reaction mixture is treated with an ultrasonic oscillation at a frequency ranging between 20 and 100 KHz and at a temperature ranging between 10.degree. and 50.degree. C. for accelerating the growth rate of a silicon dioxide layer formed on the semiconductor substrate.