Abstract:
A rotational atherectomy device for removing a stenotic tissue from a vessel of a patient is disclosed. The device comprises a rotatable, flexible, hollow drive shaft having an open distal end. The drive shaft comprising a fluid impermeable wall, an abrasive element mounted to the drive shaft proximal to and spaced away from its distal end, the fluid impermeable wall being formed from a torque transmitting coil and at least one fluid impermeable membrane which define a lumen for the antegrade flow of pressurized fluid through the drive shaft and into a distal fluid inflatable support element to inflate said fluid inflatable support element. The distal fluid inflatable support element is located at the distal end of the drive shaft and has an outer wall comprising an outflow opening.
Abstract:
A rotational atherectomy device for abrading a stenotic lesion from a vessel of a patient comprises a flexible drive shaft which extends towards a distal end of the device, a distal fluid inflatable support element located at a distal end of the drive shaft and an abrasive element mounted to the drive shaft proximal to and spaced away from the distal fluid inflatable support element. Both the abrasive element and the distal fluid inflatable support element are rotatable together with the drive shaft.
Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in blood vessels by rotating an abrasive element within the vessel. The abrasive element can be attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly.
Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in blood vessels by rotating one or more abrasive elements within the vessel. The abrasive elements can be attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly that includes a driver for rotating the drive shaft. In particular implementations, individual abrasive elements are attached to the drive shaft at differing radial angles in comparison to each other (e.g., configured in a helical array). The centers of mass of the abrasive elements can define a path that fully or partially spirals around the drive shaft. In some embodiments, a distal stability element with a center of mass aligned with the longitudinal axis is fixedly mounted to the drive shaft.
Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in blood vessels by rotating an abrasive element within the vessel. The abrasive element can be attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly.
Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in blood vessels by rotating one or more abrasive elements within the vessel. The abrasive elements are attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly that includes a driver for rotating the drive shaft. In particular implementations, the handle assembly encapsulates an electric motor assembly, a pump assembly, and a controller assembly.
Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in blood vessels by rotating an abrasive element within the vessel. The abrasive element can be attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly.
Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in blood vessels by rotating one or more abrasive elements within the vessel. The abrasive elements are attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly that includes a driver for rotating the drive shaft. In particular implementations, the handle assembly encapsulates an electric motor assembly, a pump assembly, and a controller assembly.
Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in blood vessels by rotating one or more abrasive elements within the vessel. The abrasive elements are attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly that includes a driver for rotating the drive shaft. In particular implementations, the handle assembly encapsulates an electric motor assembly, a pump assembly, and a controller assembly.
Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in blood vessels by rotating one or more abrasive elements within the vessel. The abrasive elements are attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly that includes a driver for rotating the drive shaft. In particular implementations, individual abrasive elements are attached to the drive shaft at differing radial angles in comparison to each other (e.g., configured in a helical array). The centers of mass of the abrasive elements can define a path that spirals around the drive shaft in a direction that is opposite to the wind direction of filars of the drive shaft, and opposite to the direction of rotation. In some embodiments, a concentric abrasive tip member is affixed to and extends distally from a distal-most end of the drive shaft