Abstract:
An imaging device coupled to a processor generates a number of image signals corresponding to a multicolor pattern of an item in motion. Each of a number of regions of the pattern is correlated to one of a number of reference colors to generate a segmented image of the pattern. The processor models the multicolor pattern by deriving a number of test values from the segmented image representation. Each test value is representative of a corresponding one of the regions and is determined as a function of region size independent of orientation of the multicolor pattern. The test values are compared to reference data to detect a variation of the item. The reference colors may be determined from color pairs with each pair having a first member from a first set of sample colors and a second member from a second set of sample colors. The first member is closer to the second member than any other color of the second set in the color space, and the second member is closer to the first member than any other color of the first set in the color space. An image of the item randomly oriented with respect to a model image is characterized by generating a number of characteristic values within the processor with respect to rotational position about an item image point. A rotationally correlated item image is generated as a function of the characteristic values for evaluation.
Abstract:
A system for detecting a side wall perforation in containers operates non-invasively and at line speeds. A stream of similar containers are communicated to an inspection area. An exterior of each container is illuminated while the container is in the inspection area. Light from an interior of the container is focused, via a lens, to a video camera. Any perforate flaw in the container walls results in a point source of light in the container interior. Since the perforations are relatively small, the point source is created due to diffractive properties of the slit perforation. These diffractive properties facilitate obtaining an image of the flaw from the camera disposed to the interior of the container when the camera is mounted orthogonally to the perforation or parallel to the wall being inspected. In an other embodiment, the relative positions of the light source and camera are interchanged. A method for container inspection is also provided in connection with the afore-noted structure.