Abstract:
An automatic trim system and method is disclosed for automatically trimming a flight control surface of an aircraft. A force sensor measures a force applied by a pilot to a flight control system actuator. The length of time that the force is applied by the pilot is then timed by a timer. A trim system to reduce the applied force is included on the flight control surfaces. A processor determines if trim is required if a predetermined amount of time is exceeded based on the force sensor measurement. The processor can set the trim system to the trim required therein. An airspeed sensor is used to verify that the aircraft has sufficient speed for flight. A force sensor can be utilized to measure the input force being applied by the pilot. If a pilot input force is applied to the controls and the aircraft is in a steady state, a timer can be activated. If the force sensor continues to sense a force after the timer times for a predetermined time, the trim can be adjusted in the appropriate direction until the force sensor measures no significant pilot input force.
Abstract:
An apparatus for converting a manned aircraft of a type including at least one pilot control capable of manipulation to affect operation of the aircraft for unmanned flight operations includes first and second actuators, each configured to selectively provide movement or resistance to movement in a first manner including linear or rotational motion, first and second clutches, each configured to selectively couple movement of the associated actuator to or from the pilot control during flight, and a vehicle controller capable of being selectively enabled during flight to operate the pilot control actuators and clutches and thereby provide unmanned operation of the aircraft, or of being disabled, thereby providing for manned operation of the aircraft. The first actuator has a first scope describing a first amount of allowable movement, while the second actuator has a second scope larger than the first scope.
Abstract:
An apparatus for converting a manned aircraft of a type including at least one pilot control capable of manipulation to affect operation of the aircraft for unmanned flight operations includes first and second actuators, each configured to selectively provide movement or resistance to movement in a first manner including linear or rotational motion, first and second clutches, each configured to selectively couple movement of the associated actuator to or from the pilot control during flight, and a vehicle controller capable of being selectively enabled during flight to operate the pilot control actuators and clutches and thereby provide unmanned operation of the aircraft, or of being disabled, thereby providing for manned operation of the aircraft. The first actuator has a first scope describing a first amount of allowable movement, while the second actuator has a second scope larger than the first scope.
Abstract:
An apparatus for converting a manned aircraft of a type including at least one pilot control capable of manipulation to affect operation of the aircraft for unmanned flight operations includes first and second actuators, each configured to selectively provide movement or resistance to movement in a first manner including linear or rotational motion, first and second clutches, each configured to selectively couple movement of the associated actuator to the pilot control, and a vehicle controller capable of being selectively enabled to operate the pilot control actuators and clutches and thereby provide unmanned operation of the aircraft, or of being disabled, thereby providing for manned operation of the aircraft. The first actuator has a first scope describing a first amount of allowable movement, while the second actuator has a second scope larger than the first scope.
Abstract:
A flight control computer (FCC) may implement automatic rotor tilt control by gathering or receiving, as inputs, airspeed or a commanded airspeed for the aircraft, acceleration or a commanded acceleration for the aircraft, pitch attitude of the aircraft and pilot pitch bias commands for the aircraft, a rotor tilt angle, and/or the like. The FCC calculates, from the airspeed, the commanded airspeed, the acceleration, the commanded acceleration, the pitch attitude, the pilot pitch bias commands, and/or the like, a commanded rotor tilt angle for the aircraft. From the aircraft rotor tilt angle and the commanded rotor tilt angle, the FCC calculates a rotor tilt angle error for the aircraft, and from the rotor tilt angle error, calculates a rotor tilt rate command for the aircraft. The FCC outputs the resulting rotor tilt rate command to (an) aircraft flight control element actuator(s) to tilt the aircraft rotor.
Abstract:
In some embodiments, a control manager is disposed between the rotor system and the flight control inceptor.The control manager is configured to receive control commands wirelessly from a ground control station, translate the control commands into one or more axes associated with the flight control inceptor, and transmit the translated control commands to the rotor system in place of the instructions received from the pilot via the flight control inceptor.
Abstract:
An inceptor apparatus (10) for controlling a vehicle, in particular an aircraft comprises a control stick (15) for operation by a user and a user feedback generator (28) coupled to the control stick and configured to receive signals from a vehicle condition indicator (40) remote from the inceptor apparatus. The apparatus also has a first vehicle condition sensor (54,56) dedicated to the operation of the inceptor apparatus. In a first mode of operation, the user feedback generator (28) is operable to generate tactile feedback to the user via the control stick in dependence upon signals received from the vehicle condition indicator (40). In a second mode of operation, in the event that no signal is received from the vehicle condition indicator (40), the user feedback generator (28) is operable to generate tactile feedback to the user via the control stick in dependence upon signals received from the first vehicle condition sensor (54,56).
Abstract:
A piloting system having a control stick configured to control the aircraft with respect to its three piloting axes, namely the pitch axis, the roll axis and the yaw axis, and an auxiliary control device configured to automatically control the aircraft during one of the following phases: a landing phase and a takeoff phase. The auxiliary control device automatically controls the aircraft with respect to at least one of the piloting axes, and the other piloting axes, which are not controlled automatically by the auxiliary control device, then being controlled manually by a pilot with the aid of the control stick.
Abstract:
A pilot control interface and method are described for selective control of an autopilot system by a pilot of an aircraft in which the autopilot system is installed. The pilot control interface includes a passive network that is selectively switchable between a plurality of states across an output interface that is made up of no more than two conductors that are in electrical communication with the autopilot system. Modification of a current autopilot flight mode can be performed incrementally or continuously based on respective momentary and continuous pilot input actuations.
Abstract:
A system including a load factor control module for calculating a deflection order on manual actuation of a control column by a pilot of the aircraft and transmitting that deflection order to at least one elevator of the aircraft, a longitudinal attitude control module for maintaining the longitudinal attitude of the aircraft at a target attitude in the event of absence of manual actuation of the control column by the pilot during a flight, and a transition management module for determining and storing a present longitudinal attitude value of the aircraft at a recording moment and transmitting that longitudinal attitude value to the longitudinal attitude control module for the longitudinal attitude control module to use the longitudinal attitude value as the target attitude.