Abstract:
An oil sealing device for preventing a leakage of an oil of a bearing which supports a rotary shaft of a rotating machine has a brush member having a plurality of bristles in contact with the rotary shaft, and an actuator configured to move the brush member in a length direction of the rotary shaft, wherein a sloped surface having different heights along a length direction of the rotary shaft is formed at the rotary shaft, and wherein when the bristles are worn, the actuator moves the brush member in a length direction of the rotary shaft so that the bristles comes into contact with the sloped surface.
Abstract:
Sealing systems and related methods are provided. In this regard, a representative sealing system includes: an elongated seal having a contact surface configured to form an airtight seal with an inner surface of the drum; contact sensor circuitry configured to provide an electrical signal containing information indicative of direct contact between the seal and the inner surface of the drum; and a control actuator configured to direct a flow of lubricant responsive to receiving the information from the contact sensor indicating direct contact such that the flow of lubricant forms a film of lubricant between the contact surface and the inner surface of the drum to prevent direct contact between the seal and the drum.
Abstract:
A configuration for sealing off a duct gap between a housing wall and a shaft includes a sealing ring surrounding the shaft to be set into rotation relative to the housing wall. The sealing ring is sealed off with respect to the housing wall and the shaft. The sealing ring is displaceable relative to the housing wall and is incapable of being set into rotation by the shaft. At least one spring element is to be placed under a mechanical strain by a torque exerted upon the sealing ring by the rotation of the shaft. The strain is determined and a report is issued, if the strain deviates substantially from a predeterminable normal value.
Abstract:
A method for monitoring the condition of a piston rod sealing system of a piston compressor, the system having at least two annular chambers arranged one behind the other in a longitudinal direction and each having a sealing element arranged therein. A piston rod running through the sealing elements and the annular chambers is moved back and forth in the longitudinal direction, sealed by the sealing elements. The system has an inlet side and an outlet side, between which a difference in pressure occurs, and said difference in pressure has static and dynamic pressure component. When there is leakage gas in the annular chambers, at least the dynamic pressure component of the leakage gas is measured in the piston rod sealing system. A change in the condition of at least one of the sealing elements is determined from a change in the dynamic pressure component as a function of time.
Abstract:
An arrangement for measuring the distance between at least one seal bar (20) and a rotating drum (10) of a drum displacement washer, including at least one sensor element (30) positioned inside the rotating drum (10) and configured to provide a signal indicative of the distance between the outer surface of the rotating drum (10) and the at least one seal bar (20); and a signal transfer element (50) configured to transfer the signal outside the rotating drum (10).
Abstract:
An abradable seal includes an outer ring arrangement and an energiser for urging said outer ring arrangement against an opposing surface, wherein an outermost surface of said outer ring arrangement defines a sealing surface of said abradable seal; wherein said outer ring arrangement is configured such that after a first period of operation said sealing surface suddenly transitions from having a relatively large surface area to having a relatively small surface area, so as to cause a sudden increase in internal leakage across the seal at said transition.
Abstract:
A seal arrangement for sealing a gap between a machine element comprising a shaft and a housing includes: at least one sealing element formed, at least partially, from polymeric material. The at least one sealing element is of annular design and is made of PTFE. The at least one sealing element has at least one first annular element and at least one second annular element. The at least one first element is electrically conductive and the at least one second element is electrically insulating. The at least one first element is arranged axially adjacently to the at least one second element. The at least one sealing element is provided with electrically conductive contact elements. The housing has an installation space forming an annular groove for the at least one sealing element. The installation space is provided with a lining forming an insulation.
Abstract:
The invention in provides an apparatus, system and method of monitoring a sealing device. The apparatus comprises an inlet configured to receive pressurised fluid from a seal activation fluid pressure source and an outlet configured to be connected to a sealing device to deliver pressurised fluid to a seal element of the sealing device to energise the sealing device in use. A fluid barrier is disposed between the inlet and the outlet and is operable to isolate the inlet from the outlet. A fluid chamber is defined between the fluid barrier and the outlet, and the apparatus comprises means for detecting a change in condition in the fluid chamber indicative of a change in volume of the seal element of the sealing device.
Abstract:
The present sealing member has a body 3 and an extension 2 comprised of moldable plastic and/or curable elastomeric polymeric material. One or more radio frequency identification (RFID) transponders 1 is/are incorporated according to the present method into a preform of the extension and then molded, cured and/or cooled to embed the transponder 1 uniquely, permanently, and accessibly.