Abstract:
An optical axis adjusting device for adjusting an eccentricity of an adjusting lens group of the lens system with respect to a fixed lens group of the lens system, by moving the adjusting lens group in a direction orthogonal to an optical axis of the fixed lens group, includes an adjusting lens group support member movable in a direction orthogonal to the optical axis of the fixed lens group, and a resilient cylindrical chuck made of a resilient material which is provided with the adjusting lens group support member, the resilient cylindrical chuck having a lens holding portion which is formed at an open end of the resilient cylindrical chuck so as to surround and resiliently hold the adjusting lens group.
Abstract:
Photographic developing apparatus is described which includes a tray for receipt of photographically sensitized material to be developed having a light tight lid to form the processing tank and a raised annular foot on the underside of the tray. The apparatus also includes a domed base, the domed base and the underside of the tray member being such that, when the tray member is mounted on the domed base, substantially a point of the tray member within the annular foot is movable in a circular path substantially about the central axis of the domed base with the annular foot bearing on the domed base. The tray may also be rotatable about its central axis. The tray, on the domed base, can be driven manually or by motor, to give the tray a rocking movement. In this photographic sensitized material can be developed in the tray using small amounts of processing liquid but ensuring good spreading of that processing liquid over the material being processed.
Abstract:
An improved lens arrangement is provided for use in a camera of the type having a focal plane and a subject-to-camera distance responsive effective maximum aperture limiting control arrangement operatively disposed with respect to the focal plane. The improved lens arrangement has a reverse spherical aberration corrective characteristic which operates to reduce the effective circles of confusion associated with each of the images of different subjects within a given range of distances from the camera as formed at the focal plane by the lens arrangement in combination with the effective aperture control arrangement.
Abstract:
Various embodiments include a camera with a voice coil motor (VCM) actuator assembly to provide autofocus (AF) and/or optical image stabilization (OIS) movement. The VCM actuator assembly is configured to move an image sensor of the camera in three dimensions (e.g. X, Y, and Z) to provide the AF and/or OIS movements. The VCM actuator assembly is asymmetrical and includes an at least partially open side that allows an optical assembly of the camera to pass through the open side of the VCM actuator. In some embodiments, the optical assembly is part of a folded optics arrangement of the camera that includes one or more prisms/and or lenses.
Abstract:
A method and a device for measuring the topography and/or the gradients and/or the curvature of an optically active surface of an object are disclosed. The device allows the object to be arranged in a receiving region with a contact surface for contact with the object. Inside the device, there is a plurality of point light sources that provide light that is reflected at the surface to be measured of an object arranged in the receiving region. The device includes at least one camera with an objective assembly and an image sensor for detecting a brightness distribution which is produced on a light sensor by the light of the point light sources reflected at the surface to be measured.
Abstract:
Disclosed is a back focus adjustment mechanism and a camera provided with the same. The back focus adjustment mechanism comprises a driving device (10) and a positioning and guiding device (20) separately provided, wherein the positioning and guiding device (20) comprises a positioning assembly (21) and a guiding assembly (22), the guiding assembly (22) is mounted on the positioning assembly (21), and the driving device (10) is in driving connection with the guiding assembly (22) to drive the guiding assembly (22) to move. In the back focus adjustment mechanism and a camera provided with the same, after the driving device (10) and the positioning and guiding device (20) are separately provided, each structure of the back focus adjustment mechanism can be simpler, and the reliability of each structure of the back focus adjustment mechanism can be increased under the same processing precision.
Abstract:
A projector includes a light source apparatus, an image formation apparatus that includes a light modulator and forms an image, the light modulator modulating light outputted from the light source apparatus, a projection optical apparatus that projects the image formed by the image formation apparatus, and an attitude adjustment apparatus that causes the light modulator to pivot around a pivotal axis perpendicular to the optical axis of the projection optical apparatus to adjust the attitude of the light modulator.
Abstract:
There are provided a variable magnification optical system and a control method thereof which are capable of relatively accurately adjusting a positional relationship between a variable magnification optical device and an imaging surface of an imaging device according to a zoom amount. A zoom lens included in the variable magnification optical device is positioned at a telephoto end and a wide angle end, and shift amounts ΔS1 and ΔS2, tilt angles θ1 and θ2, rotation angles ϕ1 and ϕ2, and focusing adjustment amounts Δ1 and Δ2 of the variable magnification optical device are set by a user and are stored. In a case where a zoom amount of the zoom lens is set to a desired value by the user, a shift amount corresponding to the set zoom amount is calculated by using the stored shift amounts ΔS1 and ΔS2. The positional relationship between the variable magnification optical device and the imaging surface of the imaging device is adjusted so as to have the calculated shift amount.
Abstract:
Surveillance networks are used to observe large areas, like public places, streets, public buildings or private houses, privates premises etc. The surveillance networks often comprise a plurality of surveillance cameras. Such surveillance cameras should be small, robust, trouble-free and have low-maintenance requirements. Subject-matter of the invention is a linear actuator (8) for a linear motion of a component of a camera (1), the linear actuator comprising a supporting structure (6), a motor (10) arranged on the supporting structure for generating a rotational movement, a component carrier (7) for carrying the component and for performing the linear motion relative to the supporting structure, a gear mechanism (11) for transmitting the rotational movement, whereby the last gear of the gear mechanism before the component carrier is a transfer gear (20), whereby the transfer gear comprises a guide way (23a, b, c) extending in rotational direction of the transfer gear with a slope along the guide way whereby the component carrier is coupled with the guide way by resting means (24a, b, c), so that the component carrier is displaced in the linear direction (9) by a rotational movement of the transfer gear due to the slope of the guide way.