Abstract:
A differential having four pinions supported for rotation on cross pins within a differential case. The differential employs a retainer system for securing the cross pins relative to the differential case. The retainer system can include a collar and a plurality of pin members.
Abstract:
An axle assembly having an axle assembly with first and second sumps for holding a lubricant. A rotating ring gear associated with a differential can rotate through the lubricant in the first sump to cause a portion of the lubricant to cling to the ring gear. A portion of the lubricant that has clung to the ring gear can be removed from the ring gear and transferred to the second sump. The lubricant in the second sump can be drained to lubricate teeth of a pinion that is in meshing engagement with the ring gear and/or to lubricate bearings that support the pinion. A related method is also provided.
Abstract:
A vehicle with primary and secondary drivelines and a power take-off unit (PTU). The primary driveline has a first differential that is configured to distribute power to a first set of wheels. The PTU has a PTU input, a PTU output and a synchronizer for selectively de-coupling the PTU output from the PTU input. The secondary driveline is configured to distribute power to a second set of wheels and has a propshaft, a second differential, a pair of half-shafts and at least one torque transfer device (TTD). The propshaft transmits rotary power between the PTU output and an input of the second differential. The half-shafts are rotatably coupled to an output of the second differential and are configured to transmit rotary power to the second set of wheels. The at least one TTD is configured to selectively inhibit torque transmission through the second differential to the second set of wheels.
Abstract:
A die for forming a lost wax ceramic core allows the formation of non-parallel separating spaces between adjacent portions of the core. The core will eventually form cooling channels in an airfoil. The die for forming the core includes a plurality of moving parts having rib extensions. At least some rib extensions are non-parallel to form the non-parallel spaces. The die includes two main die halves that come together to form several of the spaces. Inserts move with those die components and come together to form other spaces. At least one of the inserts contacts surfaces on one of the die halves, such that the non-parallel spaces are formed.
Abstract:
An overrunning torque transmitting device that employs a plurality of cone clutches and an overload mechanism for limiting the torque transmitted through the device in a predetermined rotational direction. A method for transmitting torque is also provided.
Abstract:
A method and apparatus for cooling a wall within a gas turbine engine is provided which comprises the steps of: (1) providing a wall having an internal surface and an external surface; (2) providing a cooling microcircuit within the wall that has a passage for cooling air that extends between the internal surface and the external surface; and (3) increasing heat transfer from the wall to a fluid flow within the passage by increasing the average heat transfer coefficient per unit flow within the microcircuit. According to one aspect, the present invention method and apparatus can be tuned to substantially match the thermal profile of the wall at hand.
Abstract:
A hollow airfoil is provided which includes a body, a trench, and a plurality of cooling apertures disposed within the trench. The body extends chordwise between a leading edge and a trailing edge, and spanwise between an outer radial surface and an inner radial surface, and includes an external wall surrounding a cavity. The trench is disposed in the external wall along the leading edge, extends in a spanwise direction, and is aligned with a stagnation line extending along the leading edge.
Abstract:
A differential case is provided including at least one assembly window formed therein for providing access to a chamber interior of the differential case. The assembly window in the differential case is defined by a pair of opposed circular edge portions of the differential case interconnected by a pair of opposed elongated edge portions of the differential case. The pair of opposed elongated edge portions have a dimension therebetween slightly larger than an outside diameter of a pair of side gears so as to allow angulated entry of the side gears into the chamber and subsequent alignment relative to a longitudinal axis. The pair of opposed circular edge portions include a radius slightly larger than a radius of a pair of pinion gears to allow entry of the pinion gears into the chamber and subsequent alignment relative to another longitudinal axis. As such, the assembly window permits easy assembly of the gear components into the differential case while improving the structural and functional characteristics thereof.
Abstract:
An axle assembly with a housing, an annular gear, a bearing, a differential, and a pair of output shafts. The housing has an annular hub. The annular gear is received in the housing. The bearing, which is a four-point angular contact bearing, supports the gear for rotation about an axis relative to the housing and has an inner bearing race, which is mounted on the annular hub, and an outer bearing race that is fixedly coupled to the annular gear. The differential is received in the housing and includes an input member, which is coupled to the annular gear for rotation therewith, and a pair of output members that are rotatable relative to the input member about the output axis. Each of the output shafts is coupled to an associated one of the output members for rotation therewith. One of the output shafts extends through the annular hub.
Abstract:
An axle assembly with a housing, a shaft received in the housing, a shaft bearing supporting the shaft for rotation relative to the housing about a shaft axis, a differential assembly, an annular band and a secondary retainer. The shaft bearing has an inner race, which is received on and directly engaged to the shaft, and an outer race that is received on and directly engaged to the axle housing. The differential assembly has an output member that is non-rotatably coupled to the shaft. The annular band is fixedly coupled to the shaft at a location along the axle shaft axis between the inner race and the output member. The secondary retainer is disposed along the axle shaft axis between the annular band and the output member and is configured to limit movement of the annular band along the axle shaft axis in a direction toward the output member.