Abstract:
There is provided a technique in which a retracting operation of a bundle of sheets from a stapler after a staple process can be stably performed irrespective of the number of sheets constituting the bundle of sheets or the transport resistance. When the bundle of sheets subjected to the staple process is moved by a stacker in a direction of retracting from the stapler, an alignment roller is caused to come in contact with the bundle of sheets held by the stacker and to assist the movement of the bundle of sheet.
Abstract:
A sheet processing apparatus includes a conveying motor for conveying a sheet along a conveying path, a skew detecting unit configured to detect a quantity of skew of the conveyed sheet, a hole punching section arranged downstream from the skew detecting unit, an attitude control unit configured to carry out skew correction by changing tilt angle of the hole punching section in accordance with the quantity of skew, a detecting unit configured to detect the forward edge and the rear edge of the sheet conveyed into the hole punching section, and a control unit configured to control the conveying motor to control the conveying speed of the sheet. During a period from when the detecting unit detects the forward edge of the sheet until the detecting unit detects the rear edge, the sheet is decelerated from a first conveying speed to a second conveying speed. After the detecting unit detects the rear edge of the sheet, the conveying of the sheet is stopped and punching processing to the sheet is executed when the conveying is stopped.
Abstract:
An image elimination apparatus includes a first reader configured to read a status of a sheet, a first judgment portion configured to judge whether the read sheet is reusable or not, an image eliminator configured to eliminate an image formed on the sheet, a second reader configured to read the sheet passing through the image eliminator, a second judgment portion configured to judge whether the image formed on the sheet is eliminated or not, and a controller configured to control the first reader and the second reader so as to read with different reading precision.
Abstract:
In a sheet post-processing apparatus to perform a folding processing to a sheet bundle, a folding roller drive motor to drive a pair of folding rollers is PWM driven, and its speed is changed according to the sheet type or sheet size and between a period before a blade comes in contact with the sheet bundle, a period when the blade is being inserted between the folding rollers after coming in contact with the sheet bundle, and a period when folding is being performed by the folding rollers.
Abstract:
A sheet processing apparatus includes a first detector configured to detect a leading edge of a sheet conveyed in a conveying direction, a second detector provided on a downstream side of the first detector in the sheet conveying direction to detect the leading edge of the sheet conveyed, a punching portion, in the downstream side of the first detector in the sheet conveying direction, to move in a sheet width direction crossing the sheet conveying direction and perform a punching process for the sheet, an edge detector configured to move in the width direction together with the punching portion and detect the edge of the sheet conveyed in the width direction, and a controller, on the basis of at least either of information of a conveying speed of the sheet and a sheet length in the conveying direction, when the edge detector starts movement in the width direction after the first or second detector detects the leading edge of the sheet, to judge whether the edge detector can detect the edge of the sheet or not, as a result of the judgment, selecting the detector positioned on the most downstream side in the conveying direction among the first and second detectors which can be used, and when the selected first or second detector detects the leading edge of the sheet conveyed, permitting the edge detector to start movement to detect the edge of the sheet in the width direction.
Abstract:
There is provided a technique in which a retracting operation of a bundle of sheets from a stapler after a staple process can be stably performed irrespective of the number of sheets constituting the bundle of sheets or the transport resistance. When the bundle of sheets subjected to the staple process is moved by a stacker in a direction of retracting from the stapler, an alignment roller is caused to come in contact with the bundle of sheets held by the stacker and to assist the movement of the bundle of sheet.
Abstract:
There is provided a technique in which in a sheet processing apparatus including a switchback portion in a sheet transport path, a contribution can be made to the improvement of maintenance in the case where a sheet jam occurs in the vicinity of a switchback position. In a sheet processing method of a sheet processing apparatus for performing a specified process to a sheet, the sheet processing apparatus includes a first sheet transport path for transporting the sheet, and a second sheet transport path that is for performing switchback transport of the sheet transported in the first sheet transport path and includes at least one of a hole, a projection and a recess in the vicinity of a meeting position between the second sheet transport path and the first sheet transport path, and the first sheet transport path and the second sheet transport path are enabled to be integrally pulled out to the outside of the sheet processing apparatus.
Abstract:
A sheet finisher of the invention includes a saddle stitch unit configured to stitch a center of a sheet bundle in which printed sheets are bundled, a fold unit that includes a pair of fold rollers and presses the center stitched by the saddle stitch unit into a nip of the fold rollers to form a fold line, and a fold reinforcing unit configured to reinforce the fold line, and the fold reinforcing unit includes a roller unit that includes a first roller and a second roller, and moves along a direction of the fold line while nipping and pressing the fold line of the sheet bundle by the first roller and the second roller, a drive unit configured to move the roller unit along the direction of the fold line from a standby position, and a nipping unit that includes a first nip plate and a second nip plate, places the sheet bundle on the first nip plate, and nips the sheet bundle at a position between the fold line and the fold unit by the first nip plate and the second nip plate, and a position of the nip of the fold rollers and a position of a nip generated by the first roller and the second roller are disposed to be substantially coincident with a position on an imaginary plane extending from a sheet bundle placement surface of the first nip plate.
Abstract:
A sheet finisher of the invention includes a saddle stitch unit configured to stitch a center of a sheet bundle in which printed sheets are bundled, a fold unit configured to fold the center stitched by the saddle stitch unit and to form a fold line, and a fold reinforcing unit configured to reinforce the fold line formed by the fold unit, the fold reinforcing unit includes a roller unit that includes a first roller and a second roller, and moves along a direction of the fold line while nipping and pressing the fold line of the sheet bundle transported from the fold unit by the first roller and the second roller, a drive unit configured to move the roller unit along the direction of the fold line from a standby position located at a position separate from an end of the sheet bundle, and a nip unit that includes a first nip plate and a second nip plate, and configured to nip the sheet bundle transported from the fold unit at a position between the fold line and the fold unit, and in the nip unit, the first nip plate and the second nip plate are opened in a thickness direction of the sheet bundle when the roller unit is located at the standby position, and the first nip plate and the second nip plate are closed to nip the sheet bundle when the roller unit reinforces the fold line after the sheet bundle is transported to between the first nip plate and the second nip plate.
Abstract:
A sheet processing apparatus includes a hole punching section arranged downstream from a skew detecting unit and orthogonally to a conveying path of a sheet, and a control unit configured to change the tilt angle of the hole punching section in accordance with each of the quantity of skew at the forward edge and the quantity of skew at the rear edge of the sheet, carry out skew correction at the forward edge within a first correction range w1, and carry out skew correction at the rear edge within a second correction range w2 (where w1>w2≧w1/2). The control unit carries out skew correction at the forward edge within the correction range w2, in the case where the detected quantity of skew at the forward edge is a tilt angle exceeding the correction range w2, and then carries out skew correction at the rear edge in accordance with the difference between the quantity of skew at the forward edge after the correction and the quantity of skew at the rear edge.