Abstract:
A bearing transducer assembly for measuring the dynamic load applied to a bearing by an oscillating or rotating member. The apparatus includes a shaft journaled within a thin walled bearing, a support member, a plurality of transducer assemblies mounted between the support member and the bearing for supporting the bearing and shaft and for detecting the dynamic load placed thereupon by the oscillation or rotation of the shaft, and an electrical circuitry for cancelling the bearing distortion components and measuring the dynamic load component representative of the dynamic load applied to the bearing.
Abstract:
A dental instrument, or a coupling connectable to the dental instrument, comprises an illuminator having a plurality of light emitting diodes that are each capable of emitting light at a selected wavelength in a range 260 to 880 nm. White or near white light emitting diodes may also be included together with a switch. Fluorescence-based diagnosis can be assisted by the use of a single dye or mixture of dyes. Light of about 400-540 nm wavelength may be used to distinguish composite, porcelain or other tooth coloured filling materials from normal tooth structures. Light of about 260-450 nm wavelength may be used to identify dental caries, calculus and/or dental plaque. Light of about 350-500 nm wavelength may be used to cure dental composite. Typically, the dental instrument is, or comprises, a drill, de-scaler, or other instruments such as for cleaning, examination or diagnosis of dental conditions.
Abstract:
An apparatus (100) and method (200) that adjusts cleaning station operation in a printing apparatus is disclosed. The apparatus can include a charge receptor (110) movable in a process direction P, where the charge receptor can have a main surface (111). The apparatus can include a charger (140) configured to generate a charge on the charge receptor and an image generator (118) configured to generate an image on the charge receptor. The apparatus can include a cleaning station (124) coupled to the charge receptor. The cleaning station can include a cleaning brush (125) coupled to the main surface of the charge receptor. The cleaning station can be configured to clean the main surface of the charge receptor. The apparatus can include a controller (150) coupled to the cleaning station. The controller can be configured to determine a type of image generated on the charge receptor and can be configured to adjust cleaning parameters of operation of the cleaning station based on the type of image generated on the charge receptor.
Abstract:
Systems and methods are provided for controlling cleaning devices in image forming apparatus electrostatic image forming apparatus. Such systems may include a charge receptor, movable in a process direction, defining a main surface. A toner application device applies toner to the charge receptor, and is configured to place a lubrication stripe including the toner on a portion of the main surface of the charge receptor, the position of the lubrication stripe is controlled with respect to a position on the main surface of the charge receptor corresponding to a paper trail edge. The dimensions and density of the lubrication stripe may also be controlled. The lubrication stripe is delivered to a secondary cleaning device including a blade engaging with the photoreceptor surface to lubricate the blade.
Abstract:
Systems and methods are provided for controlling cleaning devices in image forming apparatus electrostatic image forming apparatus. Such systems may include a charge receptor, movable in a process direction, defining a main surface. A toner application device applies toner to the charge receptor, and is configured to place a lubrication stripe including the toner on a portion of the main surface of the charge receptor at a selected time. An influence of at least one corotron on the charge receptor is modified, during the designated rotations of the charge receptor, while the portion of the surface on which the lubrication stripe is formed, or will be formed, is passing the at least one corotron. The lubrication stripe is delivered to a secondary cleaning device including a blade engaging with the photoreceptor surface to lubricate the blade.
Abstract:
Systems and methods are provided for controlling cleaning devices in image forming apparatus electrostatic image forming apparatus. Such systems may include a charge receptor, movable in a process direction, defining a main surface. A toner application device applies toner to the charge receptor, and is configured to place a lubrication stripe including the toner on a portion of the main surface of the charge receptor at a selected time. An influence of a pre-clean corotron on the charge receptor is modified, during the designated rotations of the charge receptor, while the portion of the surface on which the lubrication stripe is formed, or will be formed, is passing the pre-clean corotron. The lubrication stripe is delivered to a secondary cleaning device including a blade engaging with the photoreceptor surface to lubricate the blade.
Abstract:
Systems and methods are provided for controlling cleaning devices in image forming apparatus electrostatic image forming apparatus. Such systems may include a charge receptor, movable in a process direction, defining a main surface. A toner application device applies toner to the charge receptor, and is configured to place a lubrication stripe including the toner on a portion of the main surface of the charge receptor, the position of the lubrication stripe is controlled with respect to a position on the main surface of the charge receptor corresponding to a paper trail edge. The dimensions and density of the lubrication stripe may also be controlled. The lubrication stripe is delivered to a secondary cleaning device including a blade engaging with the photoreceptor surface to lubricate the blade.
Abstract:
Systems and methods are provided for controlling cleaning devices in image forming apparatus electrostatic image forming apparatus. Such systems may include a charge receptor, movable in a process direction, defining a main surface. A toner application device applies toner to the charge receptor, and is configured to place a lubrication stripe including the toner on a portion of the main surface of the charge receptor at a selected time. An influence of at least one corotron on the charge receptor is modified, during the designated rotations of the charge receptor, while the portion of the surface on which the lubrication stripe is formed, or will be formed, is passing the at least one corotron. The lubrication stripe is delivered to a secondary cleaning device including a blade engaging with the photoreceptor surface to lubricate the blade.