Abstract:
A multifunction device includes a scanner for scanning an image from an original document, and a printer body provided with an image-forming unit for forming an image on a paper based on image data read by the scanner. The scanner is provided on the front side of the main printer body, and a control panel is integrally provided with a scanner cover, which covers the scanner. This construction enables production of a compact device having a small footprint and enables the user to supply paper to the scanner, remove the discharged original document, and operate the control panel in the same vicinity, thereby improving operability.
Abstract:
A laser printer is provided which includes a conveying belt, which is configured for circulating movement and which indirectly supports developer over a recording medium. Furthermore, a cleaning roller which contacts the outer surface of the conveying belt and an opposing roller which faces the cleaning roller are provided. The opposing roller is arranged opposite the cleaning roller across the conveying belt, holding the belt between itself and the cleaning roller. The opposing roller is configured to rotate so as to impart motive force to the conveying belt.
Abstract:
An image-forming device includes photosensitive drums, a drum gear, a drum gear rotating body, a drum drive gear, and a drum drive gear rotating body. The drum gear is provided on an axial end of each photosensitive drum. The drum gear rotating body is provided adjacent to the drum gear for rotating together with the drum gear. The drum drive gear is engaged with the drum gear and has the same number of gear teeth as the drum gear. The drum drive gear rotating body is provided adjacent to the drum drive gear at a position corresponding to the drum gear rotating body for rotating together with the drum drive gear. A protrusion is provided on a peripheral edge of the drum gear rotating body, and a depression is formed on a peripheral edge of the drum drive gear rotating body. The phase of the drum gear and the phase of the drum drive gear are aligned when the protrusion is fitted into the depression.
Abstract:
A developing cartridge has a housing that accommodates developer therein. Rotatably mounted in the housing is a developing roller. The housing has side seals provided at each end of the developing roller that oppose the circumferential ends of the developing roller. The developing roller itself is divided into a seal region, a side-end region and a center region. A portion of the seal region and the side-end region found at each end of the developing roller with the seal region portions being at the ends of the roller and the side end region portions being between the seal region portions and the center region. Opposing the developing roller is a toner thickness regulating blade having a presser portion. The presser portion has a discontinuous cross-section such that a greater portion of the presser member contacts the developer roller in each portion of the side-end region then contacts the developer roller in the center region. As a result, a greater pressure is applied between the presser portion and the developer roller at the side-end region thereby resulting in less toner being applied to the developing roller to be carried to a photosensitive member. To further the minimize the amount of toner applied to the developing roller, the roughness in the side end region of the developing roller is smaller than the roughness in the center region and the hardness in the side end region of the developing roller is greater than the hardness in the center region. This combination of factors prevents toner from leaking from the housing at the ends of the developing rollers.
Abstract:
Even with an extend use of a laser printer, toner leakage can be prevented. A side seal disposed at each end of a developing roller includes a sealing member that makes sliding contact with a surface of the developing roller and a sponge seal that supports the sealing member. The sponge seal includes a base portion and a projecting portion. The base portion has a substantially rectangular shape, to which the sealing member is affixed. The projecting portion projects from the center of the base portion toward the inside of the developing roller along its length, without being caught between a supply roller and the developing roller.
Abstract:
In a color laser printer, each scanner unit as an exposure scanning unit is positioned on a lateral side of a developing unit, so as not to face the surface of a photoconductor drum as a photoconductor. The scanner unit emits a laser light scanned in a direction perpendicular to a rotation axis of the photoconductor drum. A last mirror, having a reflecting surface at an angle of 45° with respect to the direction of the rotation axis of the photoconductor drum, is arranged to face the surface of the photoconductor drum. The last mirror reflects the laser light emitted by the scanner unit in the direction of the rotation axis of the photoconductor drum and changes the traveling direction by 90° to irradiate the surface of the photoconductor drum. This configuration allows a process cartridge including the developing unit to be attached and detached from above.
Abstract:
In order to prevent toner leaks from both sides of a developing roller disposed within a case accommodating polymerized toner, side seals each having a TEFLON® (polytetrafluoroethylene) felt member on its surface are provided to make sliding contact with a surface of the developing roller. In addition, “Hanarl FL-Z75” (80-90 wt. % hydrofluorocarbon and 10-20 wt. % polytetrafluoroethylene) manufactured by Kanto Kasei Ltd., is used as a lubricating agent for the TEFLON® felt members to make them more lubricative. Accordingly, noise generated by the side seals sliding contact with the developing roller can be reduced. To prevent toner leaks from the sides of the developing roller, a film or resin stopper is disposed at a lower-end front edge of the case to stop the toner.
Abstract:
A process cartridge including: a photosensitive member cartridge including a photosensitive member; and a developing cartridge including a developer carrier. The developing cartridge further includes: an inputting portion; a first cover; and a second cover. The first cover has a first engagement portion configured to move the developer carrier away from the photosensitive member. The first engagement portion is positioned between an axis of the developer carrier extending in an axial direction and an axis of the inputting portion extending in the axial direction, when projected in the axial direction. The second cover has a second engagement portion configured to move the developer carrier away from the photosensitive member. The second engagement portion is positioned between the axis of the developer carrier and the axis of the inputting portion, when projected in the axial direction.
Abstract:
Cartridges may include a developing roller, an electrode, a detection member, and a cover member. The developing roller rotates about an axis extending along a first direction. The electrode includes a protrusion that protrudes along the first direction to an end portion. The detection member includes a cover portion, which covers an exposable portion of the protrusion when the detection member is in a first position, and which exposes the exposable portion of the protrusion when the detection member is in a second position. The cover member covers a portion of the detection member and exposes the cover portion when the detection member is in the first position. The cover member extends in the first direction to an end portion. An overlap portion of the protrusion extends at least to the end portion of the cover member and overlaps a portion of the cover member in a second direction.
Abstract:
A photosensitive member cartridge includes first and second side walls which rotatably support end portions of the photosensitive member in an axial direction of the photosensitive member, a rotating body disposed between the first side wall and the second side wall to face the photosensitive member, and a cartridge electrode which extends in the axial direction and disposed on the first side wall to be movable in the axial direction, and contacts the rotating body to supply electric power to the rotating body. The cartridge electrode includes a contact portion which contacts an end surface of the rotating body in the axial direction. The first side wall includes an abutting portion which abuts on the end surface of the rotating body. The cartridge electrode is configured such that the first contact portion is movable further than the abutting portion in the axial direction.