摘要:
Provided are a photonic cross-connector system, a wavelength division multiplexing (WDM) system using the photonic cross-connector system, and an optical communication network based on the WDM system. The photonic cross-connector system includes: an optical coupler branching an input optical signal into a plurality of paths; a wavelength selective switch (WSS) extracting at least one wavelength signal from the input optical signal and outputting the extracted wavelength signal to at least one port; a WDM multi-casting apparatus simultaneously copying and reproducing the input optical signal into different wavelengths and changing modulation methods of the input optical signal into different types of modulation methods; an optical transmitter and/or receiver branching and coupling the input optical signal; and a control system controlling the optical coupler, the WSS, the WDM multicasting apparatus, and the optical transmitter and/or receiver.
摘要:
Provided is an optical network in which a wavelength division multiplexing-based optical transmission scheme is implemented. An apparatus for cross-connecting an optical path includes a path switch including a plurality of input terminals receiving optical signals from other nodes, and a plurality of output terminals sending the optical signals to the other nodes, the path switch switching the path of the optical signal so that the optical signal input via one of the input terminals is output to one of the output terminals; and a wavelength converter converting a wavelength of the optical signal input via the input terminal and outputting the wavelength-converted optical signal to the output terminal according to a switching result of the path switch. Thus, inefficient use of a network resource due to wavelength collision can be prevented, the path can be automatically cross-connected and thus quickly established, path switching and branch combination can be performed irrespective of wavelength, and switching can be performed irrespective of direction.
摘要:
An optical node capable of supporting a mesh-type optical network is provided. The node includes: N ROADMs, which separate specific wavelength channels from a multiple wavelength channel optical signal that is input from any node constituting the optical network, allows the rest of the wavelength channels to be passed, and combine another added wavelength channel with the passed wavelength channel to allow the combined wavelength channel to be passed; an N×1 optical switch which selects the specific wavelength channel separated from one of the N ROADMs and inputs the specific wavelength channel into an optical transceiver and selects one of the N ROADMs and connects a wavelength channel that is output from the optical transceiver to the selected ROADM; and an electrical cross connect switch which drops a part of electrical signal bandwidth of the specific wavelength channels separated by the ROADM, which is converted into the electrical signals in the optical transceiver, toward an external client and combines the rest of the electrical signal bandwidth with a electrical signal added by the external client to form an electrical signal bandwidth of a wavelength channel and output the electrical signal to the optical transceiver. Accordingly, optical fiber inputs and outputs in various directions can be supported, and the number of WDM transceivers used for each node is remarkably reduced, thereby improving efficiency and economical efficiency of a network.
摘要:
Provided are a photonic cross-connector system, a wavelength division multiplexing (WDM) system using the photonic cross-connector system, and an optical communication network based on the WDM system. The photonic cross-connector system includes: an optical coupler branching an input optical signal into a plurality of paths; a wavelength selective switch (WSS) extracting at least one wavelength signal from the input optical signal and outputting the extracted wavelength signal to at least one port; a WDM multi-casting apparatus simultaneously copying and reproducing the input optical signal into different wavelengths and changing modulation methods of the input optical signal into different types of modulation methods; an optical transmitter and/or receiver branching and coupling the input optical signal; and a control system controlling the optical coupler, the WSS, the WDM multicasting apparatus, and the optical transmitter and/or receiver.
摘要:
A dispersion compensating fiber (DCF), which is an amplification medium of an S-band discrete Raman amplifier (RA), has a trapezoid core, an inner cladding surrounding the trapezoid core; and an outer cladding surrounding the inner cladding. A ring is disposed between the inner cladding and the outer cladding. The refractive index plotted across the diameter of the trapezoid core as a function of distance is substantially trapezoidal in shape. The difference in refractive index between the trapezoid core and the outer cladding is 1.2 to 1.6%; between the inner cladding and the outer cladding is 0.4 to 0.8%; and between the ring and the outer cladding is 0.2 to 0.6%. The thickness of the ring is 0.8 to 1.2 times the radius of the trapezoid core, and the thickness of the inner cladding is 1 to 3 times the radius of the trapezoid core.
摘要:
Provided are a Raman amplifier and a Raman pumping method. A light source unit outputs a pumping light having a wavelength that periodically changes. A light intensity control unit varies a light intensity of the pumping light using the pumping light to improve the gain flatness of a Raman gain. A control unit directs the light intensity control unit to control the light intensity of the pumping light in synchronization with changes in the wavelength of the pumping light.