Abstract:
Coded integration of a self-capacitance array to improve signal-to-noise ratio (SNR) of self-capacitance measurements is disclosed. A composite measurement of the self-capacitance of a plurality of electrodes can be measured for a plurality of integration periods. The composite measurements can include weighted contributions of charge from the plurality of electrodes, the weighting corresponding to a code. In some examples, the weighted contribution can include positive contributions integrated by a first integrator circuit and negative contributions integrated by a second integrator circuit. The composite measurements of the self-capacitance for the plurality of integration periods can be decoded to extract the self-capacitance measurement for the electrodes. The SNR for the self-capacitance measurements can therefore be improved by increasing the number of samples during the total integration period without requiring dedicated sensing circuitry for the electrodes.
Abstract:
Power consumption of touch sensing operations for touch sensitive devices can be reduced by implementing a coarse scan (e.g., banked common mode scan) to coarsely detect the presence or absence of an object touching or proximate to a touch sensor panel and the results of the coarse scan can be used to dynamically adjust the operation of the touch sensitive device to perform or not perform a fine scan (e.g., targeted active mode scan). In some examples, the results of the coarse scan can be used to program a touch controller for the next touch sensing frame to idle when no touch event is detected or to perform a fine scan when one or more touch events are detected. In some examples, the results of the coarse scan can be used to abort a scheduled fine scan during the current touch sensing frame when no touch event is detected.
Abstract:
A touch controller can dynamically balance performance criteria, such as signal-to-noise ratio (SNR) thresholds, with power consumption for touch sensitive devices. A touch controller can be configured to reduce power consumption by reconfiguring bank boundaries for an active mode scan so as to reduce the number of banks scanned with a banked active mode scan. Additionally or alternatively, the stimulation signal amplitude and integration time of the touch controller can be dynamically adjusted to balance performance criteria with power consumption. Default integration times and default stimulation signal amplitudes can be increased in higher-noise operating environments to raise SNR, and can be reduced to save power in lower-noise operating environments. Additionally or alternatively, the touch scanning rate of the touch controller can be dynamically adjusted to reduce power consumption of the touch sensitive device or to reallocate touch sensing frames to increase integration times and thereby SNR performance.
Abstract:
A touch input device configured to synchronize a stylus acquisition process with both a touch data acquisition process and a display refresh process is provided. The touch input device can include one or more processors that can synchronize the stylus data acquisition process to the touch data acquisition process by coordinating stylus scans to take place in between touch scans. The one or more processors can also virtual data banks to synchronize both the touch data acquisition and the stylus scan acquisition with the display refresh process.
Abstract:
A touch sensor may overlap a display. A transparent shield layer that is grounded around its edges may be interposed between the display and the touch sensor to help prevent noise from display data lines from reaching the touch sensor. The data lines may extend along a first dimension. The touch sensor may have first elongated electrodes that extend along the first dimension and second elongated electrodes that extend along a second dimension that is perpendicular to the first dimension. The second electrodes may be interposed between the first electrodes and the data lines. Pen present electrodes may be used to gather pen present data associated with a stylus on the touch sensor. Adjacent noise sensors may collect noise data that is removed from the pen present data.
Abstract:
A touch controller can dynamically balance performance criteria, such as signal-to-noise ratio (SNR) thresholds, with power consumption for touch sensitive devices. A touch controller can be configured to reduce power consumption by reconfiguring bank boundaries for an active mode scan so as to reduce the number of banks scanned with a banked active mode scan. Additionally or alternatively, the stimulation signal amplitude and integration time of the touch controller can be dynamically adjusted to balance performance criteria with power consumption. Default integration times and default stimulation signal amplitudes can be increased in higher-noise operating environments to raise SNR, and can be reduced to save power in lower-noise operating environments. Additionally or alternatively, the touch scanning rate of the touch controller can be dynamically adjusted to reduce power consumption of the touch sensitive device or to reallocate touch sensing frames to increase integration times and thereby SNR performance.
Abstract:
Self capacitance touch circuits to cancel the effects of parasitic capacitance in a touch sensitive device are disclosed. One circuit can generate a parasitic capacitance cancelation signal that can be injected into touch sensing circuitry to cancel the parasitic capacitance. Another circuit can adjust the phase and magnitude of the parasitic capacitance cancelation signal based on characteristics of channels in the touch sensing circuitry so as to fine tune the parasitic capacitance cancelations. Another circuit can drive a guard plate and touch panel electrodes so as to cancel the parasitic capacitances between the panel and the plate and between the electrodes.
Abstract:
A touch sensitive device capable of detecting signals generated by a stylus and correcting the detected stylus signals for effects due to noise present on the device is disclosed. In one example, signals are taken from one or more electrodes that are a pre-determined distance away from an electrode in which a stylus signal is detected. The pre-determined distance can be empirically determined such that a noise estimate can be generated such that the electrodes have a higher probability of containing only noise that is highly correlated to the noise present on a detected stylus signal. The generated noise estimate is then subtracted from a detected stylus signal to reduce the effect of noise on the stylus signal.