摘要:
An exemplary includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
摘要:
Specific embodiments provided herein relate to diagnosing, with improved specificity, occurrences of episodes relating to disorders that are known to affect T-wave morphology. One or more propensity metric is obtained, each of which is indicative of a patient's propensity for a specific disorder that is known to affect T-wave morphology. T-wave variability is monitored. Additionally, there is monitoring for a specific change in T-wave morphology that is known to be indicative of episodes relating to a disorder. When the specific change in T-wave morphology is detected, a diagnosis is determined for detecting the specific change in T-wave morphology, taking into account the propensity metric(s) and the T-wave variability.
摘要:
Embodiments of the present invention relate to implantable systems, and methods for use therewith, for monitoring myocardial electrical stability. A patient's heart is paced for a period of time using a patterned pacing sequence that repeats every N beats, and an electrical signal is obtained that is representative of a plurality of consecutive beats of the patient's heart while it is being paced using the patterned pacing sequence that repeats every N beats. Myocardial electrical stability is then analyzed using time domain techniques that are tailored to the patterned pacing sequence used to pace the patient's heart. In other embodiments, the patient's heart need not be paced. This abstract is not intended to be a complete description of, or limit the scope of, the invention.
摘要:
A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
摘要:
Methods and systems are provided for performing ventricular arrhythmia monitoring using at least two sensing channels that are each associated with different sensing vectors, for example by different pairs of extracardiac remote sensing electrodes. Myopotential associated with each of the sensing channels in monitored, and a ventricular arrhythmia monitoring mode is selected based thereon (e.g., based on determined myopotential levels). Ventricular arrhythmia monitoring is then performed using the selected monitoring mode.
摘要:
An exemplary includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
摘要:
Embodiments of the present invention relate to implantable systems, and methods for use therewith, for monitoring myocardial electrical stability. A patient's heart is paced for a period of time using a patterned pacing sequence that repeats every N beats, and an electrical signal is obtained that is representative of a plurality of consecutive beats of the patient's heart while it is being paced using the patterned pacing sequence that repeats every N beats. Myocardial electrical stability is then analyzed using time domain techniques that are tailored to the patterned pacing sequence used to pace the patient's heart. In other embodiments, the patient's heart need not be paced. This abstract is not intended to be a complete description of, or limit the scope of, the invention.
摘要:
Provided herein are implantable systems, and methods for use therewith, that increase the accuracy of measurements produced using an implanted sensor, where the measurements are affected by cycles of a cyclical body function (e.g., heart beat and/or respiration). In accordance with specific embodiments of system, a measurement that is presumed to be accurate is obtained. The measurement can be of a physiologic property, such as, but not limited to, blood oxygen saturation, hematocrit, or blood glucose concentration. Additionally, the implanted is used to produce a plurality of measurements of the physiologic property. Such measurements, produced using the implanted sensor, are compared to the measurement presumed to be accurate to thereby identify when the measurements produced using the implanted sensor are most accurate. Thereafter, the implanted system is configured to use the implanted sensor to produce measurements when the measurements produced using the implanted sensor are most accurate.
摘要:
Embodiments of the present invention relate to implantable systems, and method for use therein, that can detect T-wave alternans. In accordance with specific embodiments of the present invention, intrinsic premature contractions of the ventricles are detected, and at least one metric of T-waves is measured in a specified number of beats that follow each detected intrinsic premature contraction of the ventricles. A determination of whether T-wave alternans are present is made based on the measured T-wave metrics. In alternative embodiments, rather than waiting for intrinsic premature contractions of the ventricles, premature contractions of the ventricles are caused on demand by inducing premature atrial contractions. In still other embodiments, a patient's vagus nerve is stimulated to simulate premature contractions of the ventricles. This abstract is not intended to be a complete description of, or limit the scope of, the invention.
摘要:
A method and apparatus for using vagal stimulation to detect autonomic tone and assess a patient's risk of sudden cardiac death (SCD) are presented. The method involves stimulating the patient's vagus nerve in order to induce a drop in arterial blood pressure, which simulates the patient's cardiovascular response to a premature ventricular contraction (PVC). Sinus rhythm data just before and immediately following the stimulation is recorded and analyzed for a degree of heart rate turbulence (HRT) in order to detect abnormalities in autonomic tone and assess the risk of SCD. In an embodiment, the method is implemented in an implantable cardiac device (ICD), which can deliver arrhythmia prevention therapy based on the risk of SCD. The method can assess the patient's vagal activity on-demand by measuring HRT without relying on naturally occurring PVCs and eliminates the risk of causing arrhythmia associated with artificially inducing PVCs in order to measure HRT.