摘要:
A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
摘要:
A system and method for powering an implantable cardiac therapy device (ICTD) via a hybrid battery system. The hybrid battery is comprised of a low voltage and low current bioelectric cell, a high voltage and high current rechargeable cell, and a charging means. Via the charging means, the bioelectric cell maintains the rechargeable cell at or near full power. The rechargeable cell is configured to power some or all operations of the ICTD. Some ICTD operations may be powered directly by the bioelectric cell. The rechargeable cell is further configured to be charged via a continuous charging process, reducing the complexity of the charging circuitry. In an embodiment, at least the bioelectric cell is external to the ICTD, enabling easy replacement of this power source. In an embodiment, a consumable anode of the bioelectric cell is external to the ICTD, enabling replacement of the power source by replacing only the anode.
摘要:
An ionic conductor has been developed which exhibits both hydrogen ion conductivity and electronic conductivity. The conductor is a perovskite-type oxide represented by the general formula: ABO3 where A consists of at least one element selected from the group consisting of Ba, Ca, Mg and Sr and B is Ce1−xMx where M is a multivalent dopant metal, preferably Eu or Tb, and x is greater than 0 and less than 1. It is particularly useful in processes in which hydrogen is separated from a hydrogen-containing gas, e.g. in conversion of natural gas, operation of hydrogen fuel cells, etc.
摘要:
A two-phase proton and electron conductor is described which comprises (a) a proton conductive oxides represented by the formula: ABO3 where A is selected from the group consisting of Ba, Ca, Mg and Sr and B is Ce1−xMx or Zr1−xMx, where x has a value greater than zero and less than one and M is an element selected from the group consisting of Y, Yb, In, Gd, Nd, Eu, Sm and Tb, in combination with (b) an electron conductor comprising palladium. The palladium may be coated on particles of the oxide in the form of an oxide powder. This novel two-phase conductor is particularly useful as a mixed hydrogen ion and electronic conducting membrane for separating hydrogen from a hydrogen-containing gas.
摘要:
A system and method for powering an implantable cardiac therapy device (ICTD) uses a hybrid battery system. In an embodiment, the hybrid battery system includes of a first type of power cell and a second type of power cell. The first power cell is configured to power low voltage, low current background operations of the ICTD. The second power cell is configured to power high voltage, high current cardiac shocking. The second power cell is further configured to be charged by the first power cell via a continuous, non-regulated charging process, thereby reducing the complexity of the charging circuitry. The system is further configured so that when cardiac shocking is in progress, only the secondary power cell powers the shocking capacitor(s) of the ICTD, and the first power cell is electrically isolated from the shocking capacitor(s). This configuration contributes to longer battery life of the hybrid battery system.
摘要:
The present invention is directed to a conductive polyethylenedioxythiophene (PEDOT) polymer coated electrode adapted for use as a cathode electrode of an electrolytic capacitor and a method of manufacturing the same. According to the present invention, a metal foil substrate is placed in an aqueous solution of a doped 3,4-ethylenedioxythiophene (EDOT) monomer and a co-solvent, to dissolve the EDOT monomer, and a current is applied until the desired thickness of the polymer coating is electrochemically deposited. Additionally, an organic acid is added to the aqueous solution to act as an oxidizer. In order to improve the uniformity and adherence of the coating a surfactant may also be added. In a preferred embodiment, the EDOT monomer and cosolvent are first mixed, and then added to a water solution of oxidizer and dopant. The polymer film is deposited electrochemically onto the substrate by applying a DC current between 0.05 mA/cm2 and 5.0 mA/cm2 for 1 to 60 minutes, more preferably between about 0.13 mA/cm2 to about 0.26 mA/cm2 for between 9 and 18 minutes, such that a conductive polyethylenedioxythiophene (PEDOT) coating is formed on the electrode surface. According to the present invention, the increased surface area of the coated cathode results in lower gas generation and, therefore, reduced capacitor swelling, reduced oxide buildup on the cathode and prevention of electrolysis. The present invention results in electrodes with a minimum capacitance of 1 mF/cm2. The present invention also makes it possible to use thinner electrodes than conventional aluminum electrodes, thereby reducing the physical dimensions of the capacitor.
摘要翻译:本发明涉及适合用作电解电容器的阴极的导电聚亚乙基二氧噻吩(PEDOT)聚合物涂覆电极及其制造方法。 根据本发明,将金属箔基材置于掺杂的3,4-亚乙基二氧噻吩(EDOT)单体和助溶剂的水溶液中以溶解EDOT单体,并施加电流至所需厚度的 电化学沉积聚合物涂层。 另外,向水溶液中加入有机酸作为氧化剂。 为了提高涂层的均匀性和粘附性,还可以加入表面活性剂。 在优选的实施方案中,首先混合EDOT单体和共溶剂,然后加入到氧化剂和掺杂剂的水溶液中。 将聚合物膜通过在0.05mA / cm 2至5.0mA / cm 2之间施加DC电流1至60分钟,更优选在约 0.13mA / cm 2至约0.26mA / cm 2,持续9至18分钟,使得在电极表面上形成导电聚亚乙基二氧噻吩(PEDOT)涂层。 根据本发明,涂覆阴极的增加的表面积导致较低的气体产生,并因此降低电容器的膨胀,减少阴极上的氧化物积聚和防止电解。 本发明产生具有1mF / cm 2的最小电容的电极。 本发明还可以使用比常规铝电极更薄的电极,从而减小电容器的物理尺寸。
摘要:
The invention relates to a method for producing activated, substantially monodisperse, phosphorescent particles and particles formed thereby. The method suspends substantially monodisperse, phosphor-precursor particles in a fluidizing gas and then introduces a reactive gas to contact the suspended phosphor-precursor particles. Heating the suspended phosphor-precursor particles to a reaction temperature then forms unactivated phosphorescent particles. In another embodiment, the phosphor-precursor particles may be heated to a reaction temperature where they decompose to form the unactivated phosphor particles. The unactivated phosphorescent particles suspended within the fluidizing gas are activated by heating the unactivated phosphorescent particles to an activation temperature forming activated, substantially monodisperse, phosphorescent particles.
摘要:
A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
摘要:
A bioelectric battery may be used to power implantable devices. The bioelectric battery may have an anode electrode and a cathode electrode separated by an insulating member comprising a tube having a first end and a second end, wherein said anode is inserted into said first end of said tube and said cathode surrounds said tube such that the tube provides a support for the cathode electrode. The bioelectric battery may also have a membrane surrounding the cathode to reduce tissue encapsulation. Alternatively, an anode electrode, a cathode electrode surrounding the cathode electrode, a permeable membrane surrounding the cathode electrode. An electrolyte is disposed within the permeable membrane and a mesh surrounds the permeable membrane. In an alternative embodiment, a pacemaker housing acts as a cathode electrode for a bioelectric battery and an anode electrode is attached to the housing with an insulative adhesive.
摘要:
A method for coating stainless steel in which a metallic material layer of Cr and alloys of Cr and at least one of Mo, W, Ni, Si, Ti, Zr is deposited onto a metal substrate. The metallic material layer is then annealed so as to form a diffusion layer between the metallic protective coating and the metal substrate. Thereafter, the metallic material layer may be passivated, forming a stable composition of at least one of carbides, borides, nitrides, silicides, oxides, and mixtures thereof on the metallic protective coating. The protective coatings of this invention significantly reduce the corrosion rate of stainless steel used in bromide-based absorption systems.