Abstract:
A signal-path delay-estimation method includes correlating a computed coarse delay profile of at least one detected signal path cluster with a waveform to yield a strongest correlated peak for each of the at least one detected signal path cluster. The method also includes, for each of the at least one detected signal path cluster, using the strongest correlated peak to determine an adjusted delay-profile phase, re-sampling the computed coarse delay profile in accordance with the adjusted delay-profile phase, and detecting signal-path-cluster edges using the re-sampled computed coarse delay profile. This Abstract is provided to comply with rules requiring an Abstract that allows a searcher or other reader to quickly acertain subject matter of the technical disclosure. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
Multipath components of a signal transmitted through a time-varying digital radio channel are received with individual delays (τ) within a range (τ1 . . . τM) of possible delay values. The individual delays are estimated and a delay profile (g(τi)) calculated repetitively. The method comprises searching repetitively for new multipath components in a search window constituting a subset of the possible delays, and positioning the search window based on a previous delay profile (g(τi)). For each of a number of search window positions (k) a sum of power is determined for the multipath components located in the search window with that position, and the position of the search window is selected based on the determined sums of power. In this way the multipath detection is less influenced by the noise floor, and it is also effective for channels having a wide delay spread and/or significantly time-varying delay profiles.
Abstract:
An average position estimate is determined using an instantaneous position estimate, a previously-determined average position estimate, a previously-determined average signal power, and an instantaneous signal power. The average signal power is determined using the previously-determined average signal power and the instantaneous signal power.
Abstract:
Communication signal processing entails generating an overall signal correlation estimate that reflects overall impairment present in a received signal before despreading. Processing further includes parametrically constructing one or more component-specific correction terms as a function of one or more component signal correlation estimates, each estimate reflecting a particular component of the overall impairment. Combining weights are derived, as a function of this overall estimate and the correction term(s), so that they exclude the contribution of the impairment component(s) to the overall impairment. These weights are used to combine signal samples in an equalization process. As the combining weights exclude the contribution of the impairment component(s) to the overall impairment, the equalization process utilizing the weights exclusively suppresses impairment that is not attributable to the component(s). This advantageously avoids redundant suppression of the impairment component(s), since processing further includes despreading the received signal in a despreading process that suppresses the component(s).
Abstract:
Embodiments herein include a method of channel estimation in a wireless communication node. The method comprises generating, based on samples of a received signal, initial estimates of a plurality of channel coefficients forming a channel response. The method also entails, for each of the channel coefficients, dynamically calculating a coefficient-specific filter span for that channel coefficient. Notably, the coefficient-specific filter span for any given channel coefficient is calculated according to a closed-form function that minimizes aggregated estimation noise for the channel coefficient and estimation bias attributable to errors in tracking the channel coefficient. The method finally includes adapting filtering of the initial estimates independently for each of the channel coefficients to be performed over the coefficient-specific filter span calculated for that channel coefficient.
Abstract:
The number of blind decoding operations in a wireless communication receiver is reduced. In one embodiment, a candidate set of transport formats is formed by eliminating one or more allowed transport formats, thus reducing the number of decode operations to be performed. In another embodiment, a received data transmission is partially decoded according to each of a plurality of transport formats, and decode quality metrics associated with each transport format are inspected. Only the transport formats yielding sufficiently high quality metrics are utilized to fully decode the transmission. In other embodiments, upon failure to successfully decode a received transmission, it is assumed to be a retransmission with a missed control transmission, and one or more transport formats specifying the position of a previous transmission in a buffer are added to the candidate set of transport formats. The received retransmission and previously received transmission are then HARQ combined and decoded.
Abstract:
Embodiments herein include a method of channel estimation in a wireless communication node. The method comprises generating, based on samples of a received signal, initial estimates of a plurality of channel coefficients forming a channel response. The method also entails, for each of the channel coefficients, dynamically calculating a coefficient-specific filter span for that channel coefficient. Notably, the coefficient-specific filter span for any given channel coefficient is calculated according to a closed-form function that minimizes aggregated estimation noise for the channel coefficient and estimation bias attributable to errors in tracking the channel coefficient. The method finally includes adapting filtering of the initial estimates independently for each of the channel coefficients to be performed over the coefficient-specific filter span calculated for that channel coefficient.
Abstract:
A RAKE receiver is adapted to receive input from at least a first and a second antenna (104a, 104b). The RAKE receiver comprises a despreading unit (303) adapted to allocate a number (Nf) of despreading fingers to a number of delay positions of a signal which is transmitted over a channel. The RAKE receiver further comprises a delay position selection unit (305) which estimates an antenna correlation (formula 1) between the at least first and second antenna (104a, 104b) and controls the despreading unit (303) according to a first strategy for allocating the number (Nf) of fingers if the antenna correlation (formula 1) is below a predetermined threshold, and according to a second strategy otherwise. The threshold (formula 2) is selected based on at least one of the following: number of available finger in the RAKE receiver (Nf), dispersion of the channel, range of direction of arrivals (Δφ).
Abstract:
Techniques for expanding the set of addressable interfering signals in an interference cancelling receiver are described, where the task of control message detection from interfering cells is integrated in an iterative receiver process where increasingly better a priori information on the received data signals from the previous iteration is used to detect additional control messages and successively grow the set of interfering signals included in the receiver's interference mitigation processing. In an example method, first estimated symbols for a desired signal are generated. A control channel corresponding to a first interfering signal is detected, where said detecting is based on the first estimated symbols. Signal characteristics information for the first interfering signal is then derived from the detected control channel signal, and used to generate second estimated symbols for the desired signal, using an interference-mitigation technique to mitigate the effects of the interfering signal.
Abstract:
Communication signal processing entails generating an overall signal correlation estimate that reflects overall impairment present in a received signal before despreading. Processing further includes parametrically constructing one or more component-specific correction terms as a function of one or more component signal correlation estimates, each estimate reflecting a particular component of the overall impairment. Combining weights are derived, as a function of this overall estimate and the correction term(s), so that they exclude the contribution of the impairment component(s) to the overall impairment. These weights are used to combine signal samples in an equalization process. As the combining weights exclude the contribution of the impairment component(s) to the overall impairment, the equalization process utilizing the weights exclusively suppresses impairment that is not attributable to the component(s). This advantageously avoids redundant suppression of the impairment component(s), since processing further includes despreading the received signal in a despreading process that suppresses the component(s).