Abstract:
Embodiments of a User Equipment (UE), Next Generation Node-B (gNB) and methods of communication are generally described herein. The UE receive training signals from a plurality of transmit-receive points (TRPs) associated with the gNB. Each training signal may comprise a reference signal resource identifier (ID) to indicate a corresponding TRP and a corresponding transmit direction of a plurality of transmit directions. The UE may, for each transmit direction of the plurality of transmit directions, determine an average signal quality measurement based on individual signal quality measurements in multiple receive directions. The UE may select, for reporting to the gNB, a subset of the average signal quality measurements to ensure that the average signal quality measurements excluded from the subset are less than or equal to a minimum value of the average signal quality measurements in the subset.
Abstract:
Embodiments of a system and method for random access and scheduling request for new radio things sidelink are generally described herein. In some embodiments, a nUE (network user equipment) schedules a RA (random access) resource in a control channel. The nUE decodes a TAS (transmitter resource acquisition and sounding) payload, received from a wUE (wearable user equipment) in a PRB (physical resource block) addressed to a RA-ID (random access identifier) associated with the nUE. The nUE encodes, in response to decoding the TAS payload, a RAS (receiver resource acknowledgement and sounding) payload in the PRB. The nUE decodes initial access content received via a data channel from the wUE, the initial access content including a pro posed temp ID (temporary identifier) for addressing the wUE. The nUE encode, in response to the initial access content, an ACK (acknowledgement), addressed to the wUE, to accept initial access of the wUE.
Abstract:
Examples provide a mobile communication system, a mobile device, user equipment, a network node, a NodeB, circuits, apparatuses, methods, machine readable media and computer programs for mobile device, user equipment, network nodes, NodeBs. An apparatus (10) for a user equipment, UE (100), configured to communicate in a mobile communication system (400) comprises one or more interfaces (12) configured to communicate within the mobile communication system (400). The apparatus (10) comprises a control module (14) configured to control the one or more interfaces (12). Then control module (14) is configured to process reference signal configuration information received by the one or more interfaces (12). The reference signal configuration information comprises information on a reference signal radio configuration information resource, the reference signal radio resource specifying at least one reference signal from a group of two or more reference signals. The two or more reference signals differ in at least one element of the group of a time-frequency resource, a sequence, and a cyclic shift. The control module (14) is configured to enable measurements based on the at least one reference signal.
Abstract:
Neighbor cell hearability can be improved by including an additional reference signal that can be detected at a low sensitivity and a low signal-to-noise ratio, by introducing non-unity frequency reuse for the signals used for a time difference of arrival (TDOA) measurement, e.g., orthogonality of signals transmitted from the serving cell sites and the various neighbor cell sites. The new reference signal, called the TDOA-RS, is proposed to improve the hearability of neighbor cells in a cellular network that deploys 3GPP EUTRAN (LTE) system, and the TDOA-RS can be transmitted in any resource blocks (RB) for PDSCH and/or MBSFN subframe, regardless of whether the latter is on a carrier supporting both PMCH and PDSCH or not. Besides the additional TDOA-RS reference signal, an additional synchronization signal (TDOA-sync) may also be included to improve the hearability of neighbor cells.
Abstract:
An apparatus of an Integrated Access and Backhaul (IAB) node includes processing circuitry coupled to a memory. To configure the IAB node for time-domain resource management within an IAB network, the processing circuitry is to detect that a time-domain resource assigned to a child communication link of the IAB node is available. An uplink message is encoded for transmission by a mobile terminal (MT) function of the IAB node to a parent IAB node. The uplink message indicates availability of the time-domain resource for a parent backhaul link between the IAB node and the parent IAB node. A downlink message from the parent IAB node is decoded. The downlink message is received via the parent backhaul link and using the time-domain resource.
Abstract:
Resource allocation is provided for an integrated access and backhaul (IAB) network, such as a distributed unit (DU) of an IAB. Methods and systems include configuring one or more resources to allocate time-domain or frequency domain availability/utilization. Configurations of resources can be aligned between one or more nodes such that resource availability of a first node can be coupled to resources of a second node. Allocated resources can include uplink, downlink, and flexible resources. Allocated resources can be indicated as not available, hard, or soft resource types. A configuration pattern can indicate a sequence of time-domain resource or frequency domain resource availability of a DU in the IAB network.
Abstract:
Systems, devices, and techniques for operating Integrated Access and Backhaul (IAB) nodes are described. A described technique includes transmitting, by an IAB-node, first synchronization signal blocks (SSBs) for access user equipment (UEs); and transmitting, by the IAB-node, second SSBs for inter-IAB-node discovery and measurement. The technique can include measuring, by the IAB-node, one or more third SSBs for inter-IAB-node discovery and measurement, and attaching to another IAB-node that is discovered based on the measuring.
Abstract:
Technology for an Information Centric Networking gateway (ICN-GW) operable to modify an ICN message received from a user equipment (UE) in a Fifth Generation (5G) cellular network is disclosed. The ICN-GW can decode the ICN message received from the UE via a Next Generation NodeB (gNB) and an ICN point of attachment (ICN-PoA). The ICN-GW can modify the ICN message to produce a modified ICN message. The ICN-GW can encode the modified ICN message to route the modified ICN message to a data network.
Abstract:
Techniques discussed herein can facilitate reduced frequency of triggering a RLF (Radio Link Failure) timer and/or a false RLF procedure via employing one or more mechanisms for associating BFR (Beam Failure Recovery) and RLF. A first mechanism that can be employed in various embodiments can perform one or more RLF-related actions (e.g., stopping a T310 timer, resetting a N310 counter) upon BFR success. A second mechanism that can be employed in various embodiments can comprise revising one or more RLF parameters (e.g., N310, N311, T310, Out-of-sync threshold, in-sync threshold, etc.) based on the presence of a strong BFR mechanism.
Abstract:
Embodiments of an integrated access and backhaul (IAB) donor, IAB node, and methods of communication are generally described herein. An IAB network may comprise a plurality of IAB nodes to operate as relays between the IAB donor and one or more User Equipment (UE). The IAB donor may, for each of the IAB nodes, allocate a plurality of subframes to the IAB node. Each allocated subframe may have a subframe type that is one of: a downlink subframe, an uplink subframe, a flexible subframe or a not available subframe. The IAB donor may transmit, from a central unit (CU) of the IAB donor to a distributed unit (DU) an IAB node over an F1 interface, a resource coordination request message that indicates the subframe types of the plurality of subframes.