摘要:
A radio receiving apparatus and radio receiving method are provided that enable the overall apparatus circuit scale to be reduced, and small apparatus size and low apparatus cost to be achieved, without increasing the processing load, together with a mobile station apparatus and base station apparatus equipped with this radio receiving apparatus. A phase control section (290) holds a phase rotation amount of each subcarrier signal due to the delay in the sampling timing of the second antenna with respect to the first antenna, decided in advance according to the number of antennas of the radio receiving apparatus and the subcarrier frequencies. The phase control section (290) performs phase rotation by the held phase rotation amount of each of N subcarrier signals output from an FFT section (240-2) corresponding to the second antenna.
摘要:
The reception electric field strength of a desired wave is detected by desired wave reception electric field strength detecting means 102, the reception electric field strength of an interference wave is detected by interference wave reception electric field strength detecting means 103, and they are compared with each by comparing means 104 so as to calculate a D/U ratio. Also, an FER is detected by frame error rate detecting means 106. Future D/U ratio and FER are predicted from both histories and the switching of a communication channel is performed, whereby a reception state is detected without interrupting communications, and a communication quality is improved.
摘要:
A duplicating section duplicates a bit sequence to be input, and a 16QAM section modulates a bit sequence of a duplicating source to form a symbol, a 16QAM section modulates the duplicated bit sequence to form a symbol, an S/P section parallel converts the symbol sequence input in series, an S/P section parallel converts the symbol sequence input in series, and an IFFT section 15 provides IFFT processing to the input symbol sequence. Since each of multiple same bits duplicated by the duplicating section is included in a different symbol, each of the multiple same bits is allocated to each of multiple subcarriers each having a different frequency by IFFT processing. As a result, a multicarrier signal including the multiple same bits each having a different frequency is generated.
摘要:
A radio transmission apparatus performs communications with high transmission efficiency. In this apparatus, a modulator modulates data and outputs to a first spreader. A second modulator modulates data under a modulation scheme having a higher M-ary number than the first modulator and outputs the modulated data to a second spreader. The first spreader spreads the data and outputs the spread data to a frequency domain mapping section. The second spreader spreads the data and outputs the spread data to a time domain mapping section. A frequency domain mapping section maps chips with spread data on subcarriers in the frequency domain and outputs the data with chips mapped on subcarriers to an IFFT section. The time domain mapping section maps chips with spread data on subcarriers in the time domain and outputs the data with chips mapped on subcarriers to the IFFT section.
摘要:
A radio transmission apparatus performs communications with high transmission efficiency. In this apparatus, a modulator modulates data and outputs to a first spreader. A second modulator modulates data under a modulation scheme having a higher M-ary number than the first modulator and outputs the modulated data to a second spreader. The first spreader spreads the data and outputs the spread data to a frequency domain mapping section. The second spreader spreads the data and outputs the spread data to a time domain mapping section. A frequency domain mapping section maps chips with spread data on subcarriers in the frequency domain and outputs the data with chips mapped on subcarriers to an IFFT section. The time domain mapping section maps chips with spread data on subcarriers in the time domain and outputs the data with chips mapped on subcarriers to the IFFT section.
摘要:
A duplicating section duplicates a bit sequence to be input, and a 16QAM section modulates a bit sequence of a duplicating source to form a symbol, a 16QAM section modulates the duplicated bit sequence to form a symbol, an S/P section parallel converts the symbol sequence input in series, an S/P section parallel converts the symbol sequence input in series, and an IFFT section 15 provides IFFT processing to the input symbol sequence. Since each of multiple same bits duplicated by the duplicating section is included in a different symbol, each of the multiple same bits is allocated to each of multiple subcarriers each having a different frequency by IFFT processing. As a result, a multicarrier signal including the multiple same bits each having a different frequency is generated.
摘要:
A wireless communication base station apparatus that can raise the usage efficiency of the frequency resources of the whole system in a multicarrier transmission. In this apparatus, a separating part (103) separates symbols received from a modulating part (102) into symbols to be assigned to a first subcarriers group and into symbols to be assigned to a second subcarriers group. A setting part (106-1) sets the transmission power of the symbols, which are to be assigned to the first subcarriers group, to a power value as calculated by a power calculating part (105), while a setting part (106-2) sets the transmission power of the symbols, which are to be assigned to the second subcarriers group, to a power value as calculated by the power calculating part (105). Thus, the transmission power control is differently performed between the symbols to be assigned to the first subcarriers group and the symbols to be assigned to the second subcarriers group.
摘要:
A transmitting apparatus and a transmitting method wherein the systematic bit reception quality can be improved and the throughput performance can be improved. An IR parameter control part (101) controls, based on the number of retransmissions, the ratio of systematic bits to parity bits in mapping them to packets, and controls to map a parity bit to an initially transmitted packet, while mapping a systematic bit to a retransmitted packet. An encoding part (102) generates the systematic bits and parity bits and maps them to the packets in accordance with the IR parameters. A transmission power calculating part (105) calculates, based on reception quality information of the initially transmitted packet fed back from a receiving end, the transmission power of the transmitted packet to which the systematic bit is mapped. A transmission power control part (106) controls the transmission power of the retransmitted packet such that it is equal to the transmission power as calculated by the transmission power calculating part (105).
摘要:
Provided are a radio transmission device and a radio transmission method, which prevent the deterioration of a preamble detecting performance while reducing the collision probability of a RACH. In this radio transmission device, a Signature table storage unit (103) divides the magnitudes of transmission loss levels into individual levels corresponding to the distances from a base station, to cause CAZAC series and circulation shift quantities to correspond to each other at the individual levels, and is provided with a table containing a plurality of Signatures created from the CAZAC series and the circulation shift quantities caused to correspond to each other. A Signature selecting unit (104) selects one of the corresponding Signatures at random from the Signature table storage unit (103), on the basis of the magnitude of the transmission loss level outputted from a transmission loss level deciding unit (102). A RACH signal generating unit (105) generates the RACH signal with the Signature selected.
摘要:
A radio transmission apparatus capable of performing communications with high transmission efficiency. In this apparatus, modulator (2802) modulates data and outputs to spreader (2804). Modulator (2803) modulates data under a modulation scheme having a higher M-ary number than modulator (2802) and outputs the modulated data to spreader (2805). Spreader (2804) spreads the data and outputs the spread data to frequency domain mapping section (2807). Spreader (2805) spreads the data and outputs the spread data to time domain mapping section (2808). Frequency domain mapping section (2807) maps chips with spread data on subcarriers in the frequency domain and outputs the data with chips mapped on subcarriers to IFFT section (107). Time domain mapping section (2808) maps chips with spread data on subcarriers in the time domain and outputs the data with chips mapped on subcarriers to IFFT section (107).