Abstract:
A camera using a film with a magnetic storage section comprises a feed unit for feeding the film, a working unit for writing or reading data to or from the magnetic storage section of the film during feeding of the film by the feed unit, and a control unit for controlling, the working unit after the feed speed of the film being fed by the feed unit has become stable.
Abstract:
A camera using a film cartridge having an information recording member movable with the rotation of a film feed spool, the camera having an information reader for reading information from the information recording member during rotation of the same, a film feeder for feeding the film, and a controller for substantially starting the reading performed by the information reader after the film feeding performed by the film feeder has been stabilized.
Abstract:
A camera uses a film with a magnetic memory portion and includes a film transporting circuit for transporting the film, a magnetic operation circuit for writing or reading information to or from the magnetic memory portion of the film during the film transporting operation by means of the film transporting circuit and control circuit for controlling the film transporting circuit in such a manner that a film transporting speed at the time information is written by the magnetic operation circuit is slower than a film transporting speed at the time the information is read by the magnetic circuit.
Abstract:
An optical apparatus having a recording mode that is switchable between motion picture recording and still picture recording includes an optical element, a motor that includes a rotor having a magnet, and a stator having a coil configured to provide a rotational force to the magnet, the motor being configured to drive the optical element, a position sensor configured to detect a position of the rotor of the motor, and a driving circuit configured to select, in accordance with the recording mode, first driving configured to switch an electrization to the coil in the motor in accordance with a determined time interval, or second driving configured to switch an electrization to the coil in the motor in accordance with an output of the position senor.
Abstract:
A focus controller configured to control focus of an optical system that has a focus lens includes a switching circuit configured to select a first driver for the electrization to a coil of a motor in performing focus control using a first focus detector, and to select a second driver in an electrization to the coil of the motor in performing focus control using a second focus detector. The first driver is configured to switch an electrization to the coil in the motor according to an output of the position sensor. The second driver is configured to switch an electrization to the coil of the motor according to a determined time interval.
Abstract:
An optical apparatus having a recording mode that is switchable between motion picture recording and still picture recording includes an optical element, a motor that includes a rotor having a magnet, and a stator having a coil configured to provide a rotational force to the magnet, the motor being configured to drive the optical element, a position sensor configured to detect a position of the rotor of the motor, and a driving circuit configured to select, in accordance with the recording mode, first driving configured to switch an electrization to the coil in the motor in accordance with a determined time interval, or second driving configured to switch an electrization to the coil in the motor in accordance with an output of the position senor.
Abstract:
A driving device which is capable of delivering higher power and can be reduced in size. A hollow-cylindrical magnet (1) is magnetized so as to have circumferentially alternately different poles. First and second coils (2 and 3) are arranged concentric with the magnet (1) on respective axially opposite sides thereof. Tooth-shaped first and second outer magnetic pole parts (8A, 8B, 8C, 8D, 9A, 9B, 9C, and 9D) are arranged in opposed relation to the magnet (1) to extend from respective opposite end faces of the magnet (1), for being magnetized by the first and second coils (2 and 3). A rotary shaft (10) fixed to an inner periphery of the magnet (1) is formed with an inner magnetic pole part (10A) disposed in opposed relation to the first and second outer magnetic pole parts (8A, 8B, 8C, 8D, 9A, 9B, 9C, and 9D), for being magnetized by the first and second coils (2 and 3). The first and second outer magnetic pole parts (8A, 8B, 8C, 8D, 9A, 9B, 9C, and 9D) are each formed into a spiral shape.
Abstract:
A stepping motor includes a magnet having a magnetized portion, first and second coils, a first yoke having a first-magnetic-pole portion, a second yoke having a second-magnetic-pole portion, and a rotating yoke having a third-magnetic-pole portion fixed to the single surface of the magnet. The first coil is disposed outside of the outer-circumferential surface of the magnet, and the second coil is disposed inside of the inner-circumferential surface of the magnet so as to have the same concentricity as the magnet. The first and second magnetic-pole portions and the magnetized portion face each other across a certain gap. The cylindrical portion of the first yoke and the outermost-diameter portion of the rotating yoke face each other across a gap in the radial direction, and the cylindrical portion of the second yoke and the flat surface portion of the rotating yoke face each other across a gap in the shaft direction. Thus, an easy-to-assemble low-cost driving device having a thin shape in the shaft direction, and high output with small torque loss is provided.
Abstract:
A stepping motor includes a magnet ring 1 whose outer peripheral surface is circumferentially divided to form radial protrusions and recesses and whose outer peripheral surface consists of a cylindrical permanent magnet magnetized to the same polarity, first and second cylindrical coils 2 and 3, a first outer magnetic pole portion 8 excited by the first coil, a second outer magnetic pole portion 9 excited by the second coil, and an output shaft 10 formed of a soft magnetic material and fixed to the inner peripheral portion of the magnet ring, the output shaft 10 being opposed to at least one of the first outer magnetic pole portion and the second outer magnetic pole portion in a predetermined axial range and equipped with an inner magnetic pole portion excited by at least one of the first coil and the second coil. Accordingly, a low-cost, high output, and high resolution stepping motor can be provided without hindering miniaturization.
Abstract:
A motor includes a magnet formed into a hollow disc shape and having at least one flat surface circumferentially divided and alternately magnetized to opposite poles, a first coil having an inner peripheral surface opposing the outer peripheral surface of the magnet, a second coil having an outer peripheral surface opposing the inner peripheral surface of the magnet, first magnetic pole portions opposing one flat surface of the magnet, formed from a plurality of teeth extending in the radial direction of the magnet, and excited by the first coil, second magnetic pole portions formed on the opposite side to the first magnetic pole portions via the magnet at positions opposing the first magnetic pole portions, third magnetic pole portions opposing one flat surface of the magnet, formed from a plurality of teeth extending in the radial direction of the magnet, and excited by the second coil, and fourth magnetic pole portions formed on the opposite side to the third magnetic pole portions via the magnet at positions opposing the third magnetic pole portions.