Abstract:
In one embodiment, a method includes processing network data models at a network device configured to operate in a network comprising one or more network components associated with one of the network data models, generating representations of the network data models, the representations comprising labels for elements in the network data models, comparing the labels associated with leaf nodes of the network data models to identify matching leaf nodes, comparing the labels associated with parent nodes of the matching leaf nodes to identify a strength of matching, and mapping at least two of the network data models at the network device based on the strength of matching for use in a network application. An apparatus and logic are also disclosed herein.
Abstract:
In one embodiment, an exploratory linktrace is initiated from an initiating network device with an exploratory linktrace message (ELM) having a target address. Each network device receiving the ELM may then propagate the ELM on a plurality of its ports to a plurality of downstream network devices based on the target address. In addition, each receiving network device returns an exploratory linktrace reply (ELR) for each of the plurality of ports, where each ELR is returned according to one or more mechanisms to mitigate stormed replies to the initiating network device.
Abstract:
In one embodiment, an exploratory linktrace is initiated from an initiating network device with an exploratory linktrace message (ELM) having a target address. Each network device receiving the ELM may then propagate the ELM on a plurality of its ports to a plurality of downstream network devices based on the target address. In addition, each receiving network device returns an exploratory linktrace reply (ELR) for each of the plurality of ports, where each ELR is returned according to one or more mechanisms to mitigate stormed replies to the initiating network device.
Abstract:
An example method for facilitating conflict avoidant traffic routing in a network environment is provided and includes detecting, at a network element, an intent conflict at a peer network element in a network, and changing a forwarding decision at the network element to steer traffic around the conflicted peer network element. The intent conflict refers to an incompatibility between an asserted intent associated with the traffic and an implemented intent associated with the traffic. In specific embodiments, the detecting includes mounting rules from the peer network element into the network element, and analyzing the mounted rules to determine intent conflict. In some embodiments, a central controller in the network deploys one or more intentlets on a plurality of network elements in the network according to corresponding intent deployment parameters.
Abstract:
A method is provided in one example and includes receiving a current bandwidth characteristic for a link, where the current bandwidth characteristic is determined under fading conditions associated with signal propagation on the link. The method can also include calculating a new cost for the link that is different from a nominal cost associated with a nominal bandwidth of the link without the fading conditions. The method could also include routing at least a portion of a plurality of flows that are to traverse the link away from the link based, at least in part, on the new cost. Another example method includes receiving the current bandwidth characteristic for the link, comparing the current bandwidth characteristic with a preconfigured low watermark corresponding to a class-specific MTR topology associated with a class of traffic traversing the link, and removing the link from the MTR topology based on the current bandwidth characteristic.
Abstract:
In one embodiment, a first routing device establishes a virtual channel with a remote routing device in a G.8032 protocol Ethernet network ring. The first routing device and the remote routing device each being linked to a multi-homed routing device having Layer 2 connectivity to a core network. The multi-homed routing device is not configured with the G.8032 protocol. The first routing device identifies a link state from the first routing device to the multi-homed routing device. Layer 2 connectivity of the first routing device to the core network is controlled based upon the identified link state of the first routing device.
Abstract:
In one embodiment, an exploratory linktrace is initiated from an initiating network device with an exploratory linktrace message (ELM) having a target address. Each network device receiving the ELM may then propagate the ELM on a plurality of its ports to a plurality of downstream network devices based on the target address. In addition, each receiving network device returns an exploratory linktrace reply (ELR) for each of the plurality of ports, where each ELR is returned according to one or more mechanisms to mitigate stormed replies to the initiating network device.
Abstract:
An aspect of the present disclosure aims to reduce or eliminate the problems associated with processing quickly changing large sets of data. To that end, systems and methods are disclosed, enabling a semantic reasoner to identify and process incremental changes to a rules base rather than re-processing the entire rules base. Such incremental stream reasoning (i.e., only reasoning upon pushed object changes) provides an efficient and fast manner for reacting to quickly changing data.
Abstract:
A method provided in one example embodiment includes detecting a first current bandwidth of a first link in a network ring, where the first current bandwidth indicates a signal degradation on the first link. The method also includes determining whether the first current bandwidth has degraded more than a second current bandwidth of a second link in the network ring, where the second current bandwidth indicates a signal degradation on the second link. The method further includes routing one or more network flows away from the first link if the first current bandwidth has degraded more than the second current bandwidth.
Abstract:
Techniques for stitching multicast trees in a multiple data center environment. According to one embodiment, a technique for stitching multicast trees is provided, which includes determining, at an edge device of a data center, one or more Virtual Local Area Networks (VLANs) assigned to the edge device as a result of a designated forwarder election. An assigned forwarder message is sent by the edge device to one or more devices on the data center, the assigned forwarder message advertising the edge device as a designated forwarder for the VLANs assigned to the edge device. For each of the VLANs assigned to the edge device, the assigned forwarder message causes the edge device to be included in a multicast tree for the VLAN when the assigned forwarder message is received by specific ones of the devices in the data center that are associated with the VLAN.