Abstract:
The application relates to audio encoder and decoder systems. An embodiment of the encoder system comprises a downmix stage for generating a downmix signal and a residual signal based on a stereo signal. In addition, the encoder system comprises a parameter determining stage for determining parametric stereo parameters such as an inter-channel intensity difference and an inter-channel cross-correlation. Preferably, the parametric stereo parameters are time- and frequency-variant. Moreover, the encoder system comprises a transform stage. The transform stage generates a pseudo left/right stereo signal by performing a transform based on the downmix signal and the residual signal. The pseudo stereo signal is processed by a perceptual stereo encoder. For stereo encoding, left/right encoding or mid/side encoding is selectable. Preferably, the selection between left/right stereo encoding and mid/side stereo encoding is time- and frequency-variant.
Abstract:
The invention provides methods and devices for stereo encoding and decoding using complex prediction in the frequency domain. In one embodiment, a decoding method, for obtaining an output stereo signal from an input stereo signal encoded by complex prediction coding and comprising first frequency-domain representations of two input channels, comprises the upmixing steps of:(i) computing a second frequency-domain representation of a first input channel; and(ii) computing an output channel on the basis of the first and second frequency-domain representations of the first input channel, the first frequency-domain representation of the second input channel and a complex prediction coefficient. The upmixing can be suspended responsive to control data.
Abstract:
Methods and systems encoding a stereo audio signal having a left channel and a right channel are disclosed. The system includes a downmixer for generating a downmix signal and a residual signal from the stereo audio signal in selected frequency bands representing only part of a used audio frequency range of the stereo audio signal, and a decision module for selecting, in a time variant manner, either left/right perceptual encoding or mid/side perceptual encoding. The system also includes a parameter estimator for estimating stereo parameters for reconstructing a stereo image of a portion of the stereo audio signal, and a perceptual encoder for performing either left/right perceptual encoding or mid/side perceptual encoding based on the selecting to generate an encoded output signal. Finally, the system includes a bitstream generator for creating a bitstream signal comprising the encoded output signal.
Abstract:
Methods and systems encoding a stereo audio signal having an original left channel and an original right channel are disclosed. The method includes generating a downmix signal and a residual signal based on the stereo audio signal and determining one or more stereo parameters based on the stereo audio signal. The residual signal covers only a part of an audio frequency range of the stereo signal, and the one or more stereo parameters describing a stereo image of the stereo audio signal. The method further includes analyzing the stereo audio signal and selecting, based on the analyzing, left/right perceptual encoding or mid/side perceptual encoding in a time variant manner.
Abstract:
The invention provides methods and apparatuses for encoding a stereo audio signal having a left channel and a right channel. The apparatus includes a prediction coefficient estimator, downmixer, and multiplexer. The downmixer is configured operate either in a prediction mode or a non-prediction mode.
Abstract:
The application relates to audio encoder and decoder systems. An embodiment of the encoder system comprises a downmix stage for generating a downmix signal and a residual signal based on a stereo signal. In addition, the encoder system comprises a parameter determining stage for determining parametric stereo parameters such as an inter-channel intensity difference and an inter-channel cross-correlation. Preferably, the parametric stereo parameters are time- and frequency-variant. Moreover, the encoder system comprises a transform stage. The transform stage generates a pseudo left/right stereo signal by performing a transform based on the downmix signal and the residual signal. The pseudo stereo signal is processed by a perceptual stereo encoder. For stereo encoding, left/right encoding or mid/side encoding is selectable. Preferably, the selection between left/right stereo encoding and mid/side stereo encoding is time- and frequency-variant.
Abstract:
The invention provides methods and devices for stereo encoding and decoding using complex prediction in the frequency domain. In one embodiment, a decoding method, for obtaining an output stereo signal from an input stereo signal encoded by complex prediction coding and comprising first frequency-domain representations of two input channels, comprises the upmixing steps of: (i) computing a second frequency-domain representation of a first input channel; and (ii) computing an output channel on the basis of the first and second frequency-domain representations of the first input channel, the first frequency-domain representation of the second input channel and a complex prediction coefficient. The upmixing can be suspended responsive to control data.
Abstract:
The application relates to audio encoder and decoder systems. An embodiment of the encoder system comprises a downmix stage for generating a downmix signal and a residual signal based on a stereo signal. In addition, the encoder system comprises a parameter determining stage for determining parametric stereo parameters such as an inter-channel intensity difference and an inter-channel cross-correlation. Preferably, the parametric stereo parameters are time- and frequency-variant. Moreover, the encoder system comprises a transform stage. The transform stage generates a pseudo left/right stereo signal by performing a transform based on the downmix signal and the residual signal. The pseudo stereo signal is processed by a perceptual stereo encoder. For stereo encoding, left/right encoding or mid/side encoding is selectable. Preferably, the selection between left/right stereo encoding and mid/side stereo encoding is time- and frequency-variant.
Abstract:
The invention provides methods and devices for stereo encoding and decoding using complex prediction in the frequency domain. In one embodiment, a decoding method, for obtaining an output stereo signal from an input stereo signal encoded by complex prediction coding and comprising first frequency-domain representations of two input channels, comprises the upmixing steps of: (i) computing a second frequency-domain representation of a first input channel; and (ii) computing an output channel on the basis of the first and second frequency-domain representations of the first input channel, the first frequency-domain representation of the second input channel and a complex prediction coefficient. The method comprises applying independent band-width limits for the input channels.
Abstract:
An encoder, based on a combination of two audio channels, obtains a first combination signal as a mid-signal and a residual signal derivable using a predicted side signal derived from the mid signal. The first combination signal and the prediction residual signal are encoded and written into a data stream together with the prediction information. A decoder generates decoded first and second channel signals using the prediction residual signal, the first combination signal and the prediction information. A real-to-imaginary transform may be applied for estimating the imaginary part of the spectrum of the first combination signal. For calculating the prediction signal used in the derivation of the prediction residual signal, the real-valued first combination signal is multiplied by a real portion of the complex prediction information and the estimated imaginary part of the first combination signal is multiplied by an imaginary portion of the complex prediction information.