Abstract:
The separation of alkadienes from close-boiling alkenes by extractive distillation employs as solvent either N-(.beta.-mercaptoethyl)-2-pyrrolidone alone, or a mixture of N-(.beta.-mercaptoethyl)-2-pyrrolidone and either N-methyl-2-pyrrolidone or cyclohexanol, or a mixture of cyclohexanol and tetraethylene glycol. The separation of cycloalkadines from close-boiling alkadienes by extractive distillation employs N-(.beta.-mercaptoethyl)-2-pyrrolidone as solvent.
Abstract:
An extractive distillation process for separating at least one C.sub.2 -C.sub.4 alkene (preferably propylene) from at least one close-boiling alkane (preferably propane) employs propylene carbonate as solvent, optionally in admixture with a minor amount of water.
Abstract:
An extractive distillation process for separating at least one C.sub.4 -C.sub.10 alkene (monoolefin) from at least one close-boiling alkane employs solvent at least one N-mercaptoalkyl-2-pyrrolidone, preferably N-(.beta.-mercaptoethyl)-2-pyrrolidone, optionally in admixture with at least one N-alkyl-2-pyrrolidone, preferably N-methyl-2-pyrrolidone.
Abstract:
Deasphalted residual oil (DAO) and the aromatics-rich extract that is derived from DAO have low polycyclic aromatics contents, relatively low aniline points, and high flash points. They form blending stocks that improve properties of mixed feedstocks to consistently produce environmentally qualified rubber processing oil (RPO) by extraction under low solvent-to-oil ratios and moderate extraction temperatures. Distilling a petroleum crude oil under atmospheric pressure generates a bottom residual oil which is then subject to vacuum distillation to yield a bottom residual oil. DAO is produced by removing the asphalt from the vacuum bottom residual oil through extraction with light paraffinic solvent. The extract of DAO is a co-product in the production of the bright stock of the lubricating oil through extraction. The feedstock is mixed with the extract from a petroleum fraction boiling in lube oil range. Liquid-liquid counter-current extraction yields a raffinate stream; removal of solvent therefrom produces the RPO.
Abstract:
Recovering high purity benzene from hydrocarbon feedstock containing aromatics and non-aromatics is implemented by simple and low-cost modifications to conventional extractive distillation columns (EDCs). Methyl cyclohexane (MCH) that is generated through non-selective hydrogenation of toluene in hydrodesulfurization (HDS) units is a major contaminant in benzene production. To meet MCH specifications, often times the extractive distillation (ED) process for recovering purified benzene is operated with excessive benzene loss to the overhead raffinate stream, producing a lower quality non-aromatic product. Novel techniques (1) remove operational constrictions of the HDS unit on MCH production, thus lengthening the catalyst life and (2) allow the EDC to drive essentially any amount of MCH away from the bottom benzene product without concerns with benzene loss to the overhead raffinate stream and (3) recover benzene from the overhead raffinate stream to upgrade the quality of non-aromatic product and increase the benzene product recovery.
Abstract:
An improved solvent regeneration system for extractive distillation and liquid-liquid extraction processes capable of effectively removing heavy hydrocarbons and polymeric materials that otherwise develop in a closed solvent loop. The improved process employs a light hydrocarbon displacement agent, which is at least partially soluble in the solvent to squeeze the heavy hydrocarbons and polymeric materials out of the solvent, with virtually no additional energy requirement. It has been demonstrated that the light non-aromatic hydrocarbons in the raffinate stream generated from the extractive distillation or the liquid-liquid extractive process for aromatic hydrocarbons recovery can displace not only the heavy non-aromatic hydrocarbons but also the heavy aromatic hydrocarbons from the extractive solvent, especially when the aromatic hydrocarbons in the solvent are in the C10+ molecular weight range.
Abstract:
An energy efficient, high throughput process for aromatics recovery can be readily implemented by revamping existing sulfolane solvent extraction facilities, or constructing new ones, so as to incorporate unique process operations involving liquid-liquid extraction and extractive distillation. Current industrial sulfolane solvent based liquid-liquid extraction processes employ a liquid-liquid extraction column, an extractive stripping column, a solvent recovery column, a raffinate wash column, and a solvent regenerator. The improved process for aromatic hydrocarbon recovery from a mixture of aromatic and non-aromatic hydrocarbons requires transformation of the extractive stripping column into a modified extractive distillation column. The revamping incorporates the unique advantages of liquid-liquid extraction and extractive distillation into one process to significantly reduce energy consumption and increase process throughput. The revamp entails essentially only piping changes and minor equipment adjustments of the original liquid-liquid extraction facility, and is therefore, reversible.
Abstract:
An improved oxidative process that employ a robust, non-aqueous, and oil-soluble organic peroxide oxidant for effective desulfurization and denitrogenation of hydrocarbons including petroleum fuels, hydrotreated vacuum gas oil (VGO), non-hydrotreated VGO, petroleum crude oil, synthetic crude oil from oil sand, and residual oil. Even at low concentrations and without the assistance of catalysts, the non-aqueous organic peroxide oxidant is extremely active and fast in oxidizing the sulfur and nitrogen compounds in the hydrocarbon feedstocks. Furthermore, the process generates a valuable organic acid by-product that is also used internally as the extractive solvent for effective removal of the oxidized sulfur and nitrogen from the hydrocarbons without the need of a final adsorption step. Novel process steps are also disclosed to substantially prevent yield loss in the oxidative process.
Abstract:
An energy efficient, high throughput process for aromatics recovery can be readily implemented by revamping existing sulfolane solvent extraction facilities, or constructing new ones, so as to incorporate unique process operations involving liquid-liquid extraction and extractive distillation. Current industrial sulfolane solvent based liquid-liquid extraction processes employ a liquid-liquid extraction column, an extractive stripping column, a solvent recovery column, a raffinate wash column, and a solvent regenerator. The improved process for aromatic hydrocarbon recovery from a mixture of aromatic and non-aromatic hydrocarbons requires transformation of the extractive stripping column into a modified extractive distillation column. The revamping incorporates the unique advantages of liquid-liquid extraction and extractive distillation into one process to significantly reduce energy consumption and increase process throughput. The revamp entails essentially only piping changes and minor equipment adjustments of the original liquid-liquid extraction facility, and is therefore, reversible.
Abstract:
Extractive distillation processes whereby water-soluble extractive distillation (ED) solvents are regenerated and recovered employ improved operations of the extractive distillation column (EDC) so that polar hydrocarbons are recovered and purified from mixtures containing polar and less polar hydrocarbons and measurable amounts of hydrocarbons that are heavier than intended feedstock and/or polymers that are generated in the ED process. The improved process can effectively remove and recover the heavy hydrocarbons and/or remove polymer contaminants from the solvent in a closed solvent circulating loop through mild operating conditions with no additional process energy being expended. With the improved process, the overhead reflux of the EDC may be eliminated to further reduce energy consumption and to enhance the loading and performance within the upper portion of the EDC, especially when two liquid phases exists therein.