Abstract:
A method and device for decoding a signal. The method for decoding a signal includes: obtaining spectral coefficients of sub-bands from a received bitstream by means of decoding; classifying sub-bands in which the spectral coefficients are located into a sub-band with saturated bit allocation and a sub-band with unsaturated bit allocation; performing noise filling on a spectral coefficient that has not been obtained by means of decoding and is in the sub-band with unsaturated bit allocation, so as to restore the spectral coefficient that has not been obtained by means of decoding; and obtaining a frequency domain signal according to the spectral coefficients obtained by means of decoding and the restored spectral coefficient. Therefore, a sub-band with unsaturated bit allocation in a frequency domain signal may be obtained by classification, thereby improving signal decoding quality.
Abstract:
Method and apparatus are provided for reconstructing a noise component of a speech/audio signal. A bitstream, is received and decoded to obtain a speech/audio signal. A first speech/audio signal is determined according to the speech/audio signal. A symbol of each sample value in the first speech/audio signal and an amplitude value of each sample value in the first speech/audio signal is determined. An adaptive normalization length and an adjusted amplitude value of each sample value are determined according to the adaptive normalization length and the amplitude value of each sample value. A second speech/audio signal is determined according to the symbol of each sample value and the adjusted amplitude value of each sample value.
Abstract:
In a signal coding method, bits for coding allocated to different bands of a frequency domain signal obtained from an input signal are adjusted to improve the coding quality. The total available bits for coding are first allocated to the bands of the frequency domain signal according to a predetermined allocation rule. The numbers of bits allocated to the respective bands of the frequency domain signal are then adjusted when a highest frequency of the frequency domain signal to which bits are allocated is greater than a predetermined value. The frequency domain signal is coded according to the adjusted bit allocation for the bands of the frequency domain signal.
Abstract:
A stereo decoding method and apparatus are disclosed. The method includes: restoring a monophonic signal from a received code stream through decoding; restoring an interchannel level difference, a group delay, and a group phase from the received code stream through decoding; and processing the monophonic signal according to the interchannel level difference, group delay, and group phase to obtain a first channel signal and a second channel signal. According to the stereo decoding method and apparatus provided in embodiments of the present invention, the first and second channel signals are obtained according to the monophonic signal, ILD, group delay, and group phase by referring to not only the ILD but also the group delay and group phase, thereby yielding favorable stereo sound field effect for the obtained first and second channel signals.
Abstract:
The present disclosure relates to an audio signal coding method and apparatus. The method includes categorizing audio signals into high-frequency audio signals and low-frequency audio signals, coding the low-frequency audio signals using a corresponding low-frequency coding manner according to characteristics of low-frequency audio signals, and selecting a bandwidth extension mode to code the high-frequency audio signals according to the low-frequency coding manner and/or characteristics of the audio signals.
Abstract:
In a signal coding method, bits for coding allocated to different bands of a frequency domain signal obtained from an input signal are adjusted to improve the coding quality. The total available bits for coding are first allocated to the bands of the frequency domain signal according to a predetermined allocation rule. The numbers of bits allocated to the respective bands of the frequency domain signal are then adjusted when a highest frequency of the frequency domain signal to which bits are allocated is greater than a predetermined value. The frequency domain signal is coded according to the adjusted bit allocation for the bands of the frequency domain signal.
Abstract:
A vector joint encoding/decoding method and a vector joint encoder/decoder are provided, more than two vectors are jointly encoded, and an encoding index of at least one vector is split and then combined between different vectors, so that encoding idle spaces of different vectors can be recombined, thereby facilitating saving of encoding bits, and because an encoding index of a vector is split and then shorter split indexes are recombined, thereby facilitating reduction of requirements for the bit width of operating parts in encoding/decoding calculation.
Abstract:
A method for predicting a bandwidth extension frequency band signal includes demultiplexing a received bitstream to obtain a frequency domain signal; determining whether a highest frequency bin, to which a bit is allocated, of the frequency domain signal is less than a preset start frequency bin of a bandwidth extension frequency band; predicting an excitation signal of the bandwidth extension frequency band according to the determination; and predicting the bandwidth extension frequency band signal according to the predicted excitation signal of the bandwidth extension frequency band and a frequency envelope of the bandwidth extension frequency band.
Abstract:
A method includes obtaining a signal type of an audio signal and a low frequency band signal of the audio signal, where the audio signal includes the low frequency band signal and a high frequency band signal; obtaining a frequency envelope of the high frequency band signal according to the signal type; predicting an excitation signal of the high frequency band signal according to the low frequency band signal; and restoring the high frequency band signal according to the frequency envelope of the high frequency band signal and the excitation signal of the high frequency band signal. By using the technical solutions of the embodiments of the present invention, an error existing between a high frequency band signal obtained by prediction and an actual high frequency band signal can be effectively reduced, and an accuracy rate of the predicted high frequency band signal can be increased.
Abstract:
A method and device for decoding a signal. The method for decoding a signal includes: obtaining spectral coefficients of sub-bands from a received bitstream by means of decoding; classifying sub-bands in which the spectral coefficients are located into a sub-band with saturated bit allocation and a sub-band with unsaturated bit allocation; performing noise filling on a spectral coefficient that has not been obtained by means of decoding and is in the sub-band with unsaturated bit allocation, so as to restore the spectral coefficient that has not been obtained by means of decoding; and obtaining a frequency domain signal according to the spectral coefficients obtained by means of decoding and the restored spectral coefficient. Therefore, a sub-band with unsaturated bit allocation in a frequency domain signal may be obtained by classification, thereby improving signal decoding quality.