Abstract:
A method of treating a patient who has gastric cancer, gastrointestinal cancer, colorectal cancer, pancreatic cancer, lung cancer, and/or renal cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an MHC class I molecule, and the composition is for treating the patient who has gastric cancer, gastrointestinal cancer, colorectal cancer, pancreatic cancer, lung cancer, and/or renal cancer. A method of treating a patient who has cancer includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the cancer.
Abstract:
A method of treating a patient who has gastric cancer, gastrointestinal cancer, colorectal cancer, pancreatic cancer, lung cancer, and/or renal cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an MHC class I molecule, and the composition is for treating the patient who has gastric cancer, gastrointestinal cancer, colorectal cancer, pancreatic cancer, lung cancer, and/or renal cancer. A method of treating a patient who has cancer includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the cancer.
Abstract:
A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an MHC class I molecule, and the composition is for treating the patient who has glioblastoma and/or gastric cancer. A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the glioblastoma and/or gastric cancer.
Abstract:
The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to 30 peptide sequences and their variants derived from HLA class I and class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
Abstract:
The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to 11 novel peptide sequences and their variants derived from HLA class I and class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
Abstract:
The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to more than 70 novel peptide sequences and their variants derived from HLA class I and HLA class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
Abstract:
A pharmaceutical composition contains an antibody or a fragment thereof specific for COL6A3 for the treatment of a cancer. A method of treating a cancer includes administering to a subject in need thereof the pharmaceutical composition. A kit includes a container that contains the pharmaceutical composition. A method of producing an antibody or a fragment thereof against a peptide or a MHC/peptide complex. A method for detecting a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a radioisotope and detecting a signal from the radioisotope in the subject. A method for treating a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a toxin.
Abstract:
A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an MHC class I molecule, and the composition is for treating the patient who has glioblastoma and/or gastric cancer. A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the glioblastoma and/or gastric cancer.
Abstract:
The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to peptide sequences and their variants derived from HLA class I and class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
Abstract:
A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide. A pharmaceutical composition contains activated T cells that selectively recognize cells in a patient that aberrantly express a peptide, and a pharmaceutically acceptable carrier, in which the T cells bind to the peptide in a complex with an WIC class I molecule, and the composition is for treating the patient who has glioblastoma and/or gastric cancer. A method of treating a patient who has glioblastoma and/or gastric cancer includes administering to said patient a composition comprising a peptide in the form of a pharmaceutically acceptable salt, thereby inducing a T-cell response to the glioblastoma and/or gastric cancer.