摘要:
An implantable dual chamber stimulation device provides a novel detection scheme for automatically detecting atrial capture and performing an atrial pacing threshold assessment. The stimulation device preferably waits until the patient is at or near rest and monitors the patient's P-wave activity to determine a detection window where a next P-wave is expected to occur. The stimulation device then delivers an atrial pulse prior to the next detection window, and monitors the window to determine whether a P-wave occurs therein. If a P-wave does not occur, then atrial capture is present, while occurrence of a P-wave indicates absence of atrial capture. If atrial capture is absent, the stimulation device automatically determines an appropriate atrial pacing threshold by monitoring the detection window while adjusting the stimulation pulse energy level. Advantageously, the present invention further employs a “bottom-up” adjusting scheme which starts at a low energy level, below the expected atrial pacing threshold, and increases the energy level until atrial capture is detected, thus saving energy and further avoiding corruption by large polarization signals. The latter feature is compatible with the present detection scheme and conventional evoked response detection schemes. The new atrial pacing threshold is then set at the atrial pulse level at which atrial capture was effectuated plus a predetermined safety margin.
摘要:
An implantable dual chamber stimulation device provides a novel detection scheme for automatically detecting atrial capture and performing an atrial pacing threshold assessment. The stimulation device preferably waits until the patient is at or near rest and monitors the patient's P-wave activity to determine an detection window where a next P-wave is expected to occur. The stimulation device then delivers an atrial pulse prior to the next detection window, and monitors the window to determine whether a P-wave occurs therein. If a P-wave does not occur, then atrial capture is present, while occurrence of a P-wave indicates absence of atrial capture. If atrial capture is absent, the stimulation device automatically determines an appropriate atrial pacing threshold by monitoring the detection window while adjusting the stimulation pulse energy level. Advantageously, the present invention further employs a “bottom-up” adjusting scheme which starts at a low energy level, below the expected atrial pacing threshold, and increases the energy level until atrial capture is detected, thus saving energy and further avoiding corruption by large polarization signals. The latter feature is compatible with the present detection scheme and conventional evoked response detection schemes. The new atrial pacing threshold is then set at the atrial pulse level at which atrial capture was effectuated plus a predetermined safety margin.
摘要:
Methods and apparatus are provided for measuring the impedance of a patient's body. Pulse generating circuitry within a rate-responsive pacemaker is used to generate an impedance measurement signal that is applied to the body of the patient with conventional pacemaker leads. The impedance measurement signal contains a series of multiphasic impedance measurement waveforms, which have no net DC value and zero value after second integration. The impedance measurement signal allows the impedance of the body to be measured without interfering with external cardiac monitoring equipment such as electrocardiogram machines.
摘要:
A special type of AV/PV hysteresis is provided in a dual-chamber pacemaker. A long AV delay is initially provided, thereby affording as much opportunity as possible for natural AV conduction to occur. Such long AV delay is automatically shortened should AV block occur. Periodic scanning for the return of AV conduction (absence of AV block) is performed so that the AV delay can be returned to its long value as soon as possible. In one embodiment, the pacemaker "learns" the natural conduction time (AR interval) of the patient and thereafter uses such learned natural conduction time as a reference against which subsequently measured AR intervals are compared to better distinguish conducted ventricular contractions from ectopic, pathologic, or other nonconducted ventricular contractions (e.g., PVC's). If the measured AR interval is approximately the same as the "learned" AR interval, then the R-wave at the conclusion of the measured AR interval is presumed to be a conducted R-wave that signals the return of AV conduction, and the AV delay is lengthened back to its original value. If, on the other hand, the measured AR interval is significantly different than the "learned" natural conduction time, then the R-wave at the conclusion of the measured AR interval is presumed to be a nonconducted R-wave, and the AV delay is kept short. In other embodiments, other techniques are used to distinguish a conducted R-wave from a nonconducted R-wave.
摘要:
A programming system is provided that allows a physician or medical personnel to optimize the settings of various arrhythmia detection criteria and/or parameters related to hemodynamic performance to be programmed into the implanted cardiac stimulating device. The cardiac stimulating device may be a pacemaker or cardioverter/defibrillator that detects heart arrhythmias by using various arrhythmia detection criteria. The cardiac stimulating device is capable of recording the patient's cardiac signals and/or sensor data. The programming system may play back the recorded signals to test the detection criteria and hemodynamic performance and may simulate the response of the device to the cardiac signal. Alternatively, the programming system may play back an artificially created or previously stored cardiac signal for test purposes. As a result, the recorded signal may be played back repeatedly without unnecessarily stressing the patient's heart. Additionally, the programmer may suggest specific arrhythmia detection criteria and therapies to a physician based on an analysis of a patient's arrhythmia.
摘要:
A dual-chamber implantable pacemaker automatically adjusts its AV interval so that any ventricular stimulation pulses generated by the pacemaker at the conclusion of the pacemaker-defined AV interval occur at a time in the cardiac cycle that avoids fusion with the natural ventricular depolarization of a patient's heart. The AV interval is set using a search sequence that sets the AV interval value to be on one side or the other of the natural conduction time of the heart, and incrementally changes the AV interval value until it crosses over the natural conduction time interval. The cross-over point is manifest by the occurrence of an R-wave, where an R-wave had previously been absent, or the absence of an R-wave, where an R-wave had previously been present. A final AV interval value is then set as the AV interval value at the cross-over point, adjusted by appending an AV margin thereto. The search sequence is automatically invoked whenever a prescribed search time has elapsed, or whenever the sudden presence or absence of a sensed R-wave indicates a sufficient change in the natural conduction time so as to have crossed over with the existing AV interval. If the search sequence is invoked too frequently, it is automatically suspended for a prescribed suspension period.
摘要:
A system for determining P-wave or R-wave capture in response to pacemaker supplied electrical stimuli. One embodiment includes a conventional bipolar atrial lead having a tip electrode, connected to an atrial pulse generator circuit within an implantable pacemaker, and a ring electrode, spaced apart from the tip electrode, connected to a P-wave sensing EGM amplifier within the pacemaker. The bandpass characteristics of the P-wave sensing EGM amplifier allow detection of all electrical frequencies in the atrium within the bandpass chosen. The output signal from this amplifier is selectively telemetered to an external receiver, as is a signal indicating the generation of an atrial stimulation pulse, where the occurrence of atrial stimulation pulses and P-waves can be monitored. In operation, if constant time intervals between the monitored atrial stimulation pulses and P-wave occurrences are present, P-wave capture has occurred. In the event of variable time intervals, capture has not occurred and the magnitude of the atrial stimulation pulses can be increased until P-wave capture does occur. An alternative embodiment measures this time differential and makes the stimulation pulse adjustment automatically. Other embodiments use the same manual or automatic systems to determin R-wave capture.