摘要:
An exemplary method for online character recognition of East Asian characters includes acquiring time sequential, online ink data for a handwritten East Asian character, conditioning the ink data to produce conditioned ink data where the conditioned ink data includes information as to writing sequence of the handwritten East Asian character and extracting features from the conditioned ink data where the features include a tangent feature, a curvature feature, a local length feature, a connection point feature and an imaginary stroke feature. Such a method may determine neighborhoods for ink data and extract features for each neighborhood. An exemplary Hidden Markov Model based character recognition system may use various exemplary methods for training and character recognition.
摘要:
Exemplary techniques are described for selecting radical sets for use in probabilistic East Asian character recognition algorithms. An exemplary technique includes applying a decomposition rule to each East Asian character of the set to generate a progressive splitting graph where the progressive splitting graph comprises radicals as nodes, formulating an optimization problem to find an optimal set of radicals to represent the set of East Asian characters using maximum likelihood and minimum description length and solving the optimization problem for the optimal set of radicals. Another exemplary technique includes selecting an optimal set of radicals by using a general function that characterizes a radical with respect to other East Asian characters and a complex function that characterizes complexity of a radical.
摘要:
A mechanism for recognizing and inputting handwritten mathematical expressions into a computer by providing a multi-path framework is described. The framework may include symbol grouping and recognition, tabular structure analysis, subordinate sub-expression analysis, subscript/superscript analysis and character determination, and semantic structure analysis components. A method for recognizing a handwritten mathematical expression includes receiving a plurality of input strokes corresponding to a handwritten mathematical expression and providing a candidate list of recognized candidate expressions based upon the input strokes. Input strokes are grouped into symbols, tabular structures are determined, dominant symbol candidates and subordinate symbols are determined, and subscript and superscript structures are determined.
摘要:
A system and method for detection of a list in ink input is provided. A detector is provided that may detect a list such as a bulleted or numbered list of items in ink input. A group of lines may first be selected as a candidate list. Indentation level clustering and bullet detection may then be performed to determine the structure of the list. Bullet detection may be performed by detecting bullet partners, which are pairs of lines at the same indentation level that may begin with bullet candidates with similar features. The features of the bullet candidates in a pair of lines may be used to determine the likelihood of whether the pair of lines may be bullet partners. Finally, the structure of the list may be determined, including the relationship among the list items.
摘要:
An exemplary method for online character recognition of characters includes acquiring time sequential, online ink data for a handwritten character, conditioning the ink data to produce conditioned ink data where the conditioned ink data includes information as to writing sequence of the handwritten character and extracting features from the conditioned ink data where the features include a tangent feature, a curvature feature, a local length feature, a connection point feature and an imaginary stroke feature. Such a method may determine neighborhoods for ink data and extract features for each neighborhood. An exemplary character recognition system may use various exemplary methods for training and character recognition.
摘要:
Described is a technology by which online recognition of handwritten input data is combined with offline recognition and processing to obtain a combined recognition result. In general, the combination improves overall recognition accuracy. In one aspect, online and offline recognition is separately performed to obtain online and offline character-level recognition scores for candidates (hypotheses). A statistical analysis-based combination algorithm, an AdaBoost algorithm, and/or a neural network-based combination may determine a combination function to combine the scores to produce a result set of one or more results. Online and offline radical-level recognition may be performed. For example, a HMM recognizer may generate online radical scores used to build a radical graph, which is then rescored using the offline radical recognition scores. Paths in the rescored graph are then searched to provide the combined recognition result, e.g., corresponding to the path with the highest score.
摘要:
An exemplary method for online character recognition of East Asian characters includes acquiring time sequential, online ink data for a handwritten East Asian character, conditioning the ink data to produce conditioned ink data where the conditioned ink data includes information as to writing sequence of the handwritten East Asian character and extracting features from the conditioned ink data where the features include a tangent feature, a curvature feature, a local length feature, a connection point feature and an imaginary stroke feature. Such a method may determine neighborhoods for ink data and extract features for each neighborhood. An exemplary Hidden Markov Model based character recognition system may use various exemplary methods for training and character recognition.
摘要:
A mechanism for recognizing and inputting handwritten mathematical expressions into a computer by providing part of a multi-path framework is described. The part of the multi-path framework includes a subordinate sub-expression analysis component. A method for analyzing a handwritten mathematical expression for a subordinate sub-expression includes identifying sub-expressions based on dominant symbols and determining a character for potential dominant symbols based upon sub-expression information. A determination may be made whether an expression structure candidate is valid and valid expression structure candidates may be stored in a parse tree.
摘要:
Exemplary methods, systems, and computer-readable media for developing, training and/or using models for online handwriting recognition of characters are described. An exemplary method for building a trainable radical-based HMM for use in character recognition includes defining radical nodes, where a radical node represents a structural element of an character, and defining connection nodes, where a connection node represents a spatial relationship between two or more radicals. Such a method may include determining a number of paths in the radical-based HMM using subsequence direction histogram vector (SDHV) clustering and determining a number of states in the radical-based HMM using curvature scale space-based (CSS) corner detection.
摘要:
A mechanism for recognizing and inputting handwritten mathematical expressions into a computer by providing a part of a multi-path framework is described. The part of the multi-path framework includes a symbol grouping and recognition component that is designed to group input strokes that correspond to a handwritten mathematical expression into a symbol and to recognize the symbol based upon information associated with the grouped input strokes. A method for grouping and recognizing symbols of a handwritten mathematical expression includes receiving a plurality of input strokes corresponding to a handwritten mathematical expression, grouping the plurality of input strokes into symbols, recognizing the symbols based upon information, such as shape and time series information, associated with the grouped input strokes. Intra-group and inter-group information associated with the plurality of input strokes may be utilized to group the input strokes.