Abstract:
Optical packets are generated by generating a first optical beam with a first wavelength and a second optical beam with a second optical beam. The first optical beam is modulated with a payload signal and then filtered to reduce the bandwidth of the signal. The second optical beam is modulated with a label signal. The filtered modulated first optical beam and modulated second optical beam are combined to generate a dual-wavelength optical beam.
Abstract:
Methods and apparatus for providing improving optical signal transmission results over standard mode fiber using a combination of negative chirp, low extinction ratio, and self-phase modulation transmission techniques in combination are described. The use of pre-transmission signal distortion in combinations with one or more of the other transmission techniques is also described. Pre-transmission signal distortion may be introduced by controlling a modulator with a large symmetric AC signal which causes the modulator to operation in a non-linear region or, alternatively, by using a relatively small non-symmetric AC signal to drive the modulator. Use of the small non-symmetric signal has the advantage of reduced power requirements. The pre-transmission distortion acts to counter some of the distortion introduced by the transmission of the signal over an optic fiber.
Abstract:
A method of generating a dark-RZ pulse in an optical communications system with a dual-arm modulator by setting a direct current bias on the modulator to a specific value such that an output optical power from the modulator achieves a maximum value when the RF signals on the first and second arms of the modulator are off and maintaining the direct current bias at the specific value and applying RF signals to the first and second arms of the modulator and delaying one of the RF signals applied to one of the first and second arms relative to the other of the RF signals such that a dark-RZ pulse is generated with a duty cycle based on the delay. Another aspect of the invention provides a method for generating dense wave division multiplexing (DWDM) optical mm-waves in an optical transmission system by phase modulated DWDM optical signal and applying the phase modulated DWDM optical signal to an input port of an optical interleaver, the optical interleaver having a specified bandwidth to suppress the optical carriers and convert the DWDM optical signal to DWDM optical mm-waves; and amplifying the DWDM optical mm-waves and transmitting the DWDM optical mm-waves over single mode fiber (SMF).
Abstract:
An optical transmitter comprises: first and second sets of optical in-phase and quadrature modulators; an integrable tunable laser assembly; a first polarization beam splitter that is configured to divide the continuous-waveform optical signal into a x-polarized tributary and a y-polarized tributary, each of the x-polarized tributary and the y-polarized tributary is modulated by one of the first and second sets of optical in-phase and quadrature modulators in accordance with the two respective input signals; a second polarization beam splitter that is configured to combine the modulated x-polarized tributary and the modulated y-polarized tributary into one optical signal; and an optical modulator that is configured to modulate the combined optical signal using a driving voltage, wherein the driving voltage has a bias point that is reduced by a predefined offset from a predefined reference voltage level.
Abstract:
A system and method for improving receiver sensitivity of an DD-OFDM system without using frequency guard band. The method having: interleaving input data to the DD-OFDM system to generate interleaved data; encoding the input data with a first recursive systematic convolutional code to generate a first recursive systematic convolutional encoded data; encoding the interleaved data with a second recursive systematic convolutional code to generate a second recursive systematic convolutional encoded data; puncturing the first recursive systematic convolutional encoded data and the second recursive systematic convolutional encoded data to generate a parity sequence; and combining the input data with the parity sequence to generate coded DD-OFDM data; wherein the parity sequence is generated by using different puncturing rates for different OFDM subcarriers, so as to obtain higher spectral efficiency.
Abstract:
A method includes synchronizing a received signal with at least two orthogonal frequency division multiplexed OFDM training signals having only in-phase values and being real in the time domain and determining a frequency offset correction from the synchronization of the received signal and training symbols responsive to a cross-correlation between said training symbols to enable estimating all possible frequency offsets for correction for enabling OFDM demodulation of said received signal.
Abstract:
An optical signal transmitting system, comprising: an optical transmitter including one or more input terminals and an output terminal; and a temporal polarization interleaver including an input terminal and an output terminal, wherein the output terminal of the optical transmitter is communicatively coupled to the input terminal of the temporal polarization interleaver, wherein: the optical transmitter is configured to receive one or more input signals through its one or more input terminals, generate an output signal using the one or more input signals, the output signal including a x-polarized tributary and a y-polarized tributary that is pulse-to-pulse aligned with the x-polarized tributary, and transmit the output signal to the temporal polarization interleaver; and the temporal polarization interleaver is configured to receive the output signal from the optical transmitter and cause a predefined phase delay to one of the x-polarized tributary and the y-polarized tributary.
Abstract:
An optical wireless network includes an optical coupler for diverting received millimeter-wave signals comprised of an optical carrier and second order sidebands into multiple transmission paths; a downstream optical path being one of the multiple transmission paths and including an optical filter for filtering passing through the optical carrier with a single sideband, a converter for converting the optical carrier and single sideband to a corresponding electrical signal for amplification and broadcast transmission from an antenna; and an upstream path being one of the multiple transmission paths and having a filter for passing through the optical carrier only from the mm-wave signals and an intensity modulator driven by data received over the antenna to modulate the optical carrier for optical transmission to a receiving destination.
Abstract:
The present method includes providing a continuous wave CW optical source with a fixed frequency spacing, separating multiple wavelengths of said CW optical source into different channels, modulating the multiple wavelengths of the CW optical source to generate an OFDM electrical signal with multiple sub-channels and each sub-channel has a channel subcarrier spacing , mixing the OFDM electrical signal with a radio frequency RF sinusoidal signal at a frequency ξf by an electrical mixer and generating a double sideband optical signal, filtering the double sideband signal to generate a single sideband optical signal, combining all channels of the single sideband optical signal, and directly detecting each sub-band of the single sideband optical OFDM signal with a respective detector, the detector converting the optical signal to an electrical signal for digital signal processing.
Abstract:
Methods and devices are provided to facilitate production of optical signals that exhibit reduced crosstalk noise and intersymbol interference. In some configurations, a multi-stage optical interleaver, including a first and a second optical interleaver, is used to process a first and a second set of input optical channels. The composite optical output of the multi-stage interleaver includes the first set of optical channels and the second set of optical channels, where each of the first and second set of input optical channels is processed once by the first optical interleaver and once by the second optical interleaver. As such, the first and second sets of input optical channels are each filtered twice using only two optical interleavers.