Abstract:
Techniques are described for determining the topology of an optical network. A computing device receives a message on a data communication network after a first device in an optical network receives an optical pulse pattern on an optical fiber in the optical network. The computing device generates topology data using the message. The topology data indicates that a second device is physically connected in the optical network to the first device when the received optical pulse pattern matches an optical pulse pattern sent by the second device.
Abstract:
Techniques for providing closed-loop control and predictive analytics in packet-optical networks are described. For example, an integrated centralized controller is described that provides tightly-integrated, closed-loop control over components of a routing/switching network (e.g., IP/MPLS) and also the underling optical transport system, including routing wavelength and spectrum assignment. The controller adaptively and proactively maps packet flows into network resources of a routing/switching network and control, based on the mapping, allocation and utilization of optical spectrum and wavelengths within the optical transport system underlying the routing and switching network.