摘要:
A method to produce low sidelobe and high resolution spectral analysis on short data records allowing higher resolution and more dynamic range on systems including radar (SAR, GMTI, MTI), sonar, electro-cardiograms, sonograms, MRI, CAT scan, seismic, and allowing real-time analysis on dynamic systems that must operate on short data records such as engine or machine controls and failure analysis.
摘要:
A method (1300) is provided for generating one or more waveforms (130, 140). The method includes: generating a first toggle signal (1130, 1330) in response to a clock signal (1110), the first toggle signal having one of a first positive shape, a null shape, and a first negative shape for each cycle of the clock signal; multiplying the first toggle signal by a first coefficient signal to create a first intermediate signal (1440); generating a second toggle signal (1140, 1330) in response to the clock signal, the second toggle signal having one of a second positive shape, the null shape, and a second negative shape for each cycle of the clock signal; multiplying the second toggle signal by a second coefficient signal to create a second intermediate signal (1440); and generating a first output signal (1170) by adding the first intermediate signal and the second intermediate signal together (1350).
摘要:
An ultra wide bandwidth communications system, method and computer program product including an ultra wide bandwidth timing generator. The timing generator includes a high frequency clock generation circuit having low phase noise; a low frequency control generation circuit; and a modulation circuit coupled between the high frequency clock generation circuit and the low frequency control generation circuit. The high frequency clock generation circuit generates a plurality of high frequency clock signals. The low frequency control generation circuit generates a plurality of low frequency control signals. The modulation circuit modulates the high frequency clock signals with the low frequency control signals to produce an agile timing signal at a predetermined frequency and phase. The agile timing signal is generated at the predetermined frequency and phase by adjustments to at least one of frequency of the low frequency control signals, phase of the low frequency control signals, frequency of the high frequency clock signals, and phase of the high frequency clock signals.
摘要:
An identification tag is provided in which radio frequency (RF) circuitry and ultrawide bandwidth (UWB) circuitry are both provided on the same tag, along with some UWB-RF interface circuitry. The RF circuitry is used to detect when the identification tag must be accessed, and is used to connect the UWB circuitry with a power supply. The UWB circuitry then performs the necessary communication functions with a distant device and the power supply is again disconnected. In this way the power supply is only accessed when the UWB circuitry is needed and it's usable lifetime can be maximized.
摘要:
An ultra-wide band (UWB) waveform receiver with noise cancellation for use in a UWB digital communication system. The UWB receiver uses a two-stage mixing approach to cancel noise and bias in the receiver. Self-jamming is prevented by inverting a portion of the received signal in the first mixer and then coherently detecting the partially and synchronously inverted signal in the second mixer. Since the drive signals on both mixers are not matched to the desired signal, leakage of either drive signal does not jam the desired signal preventing the receiver from detecting and decoding a weak signal.
摘要:
A transceiver 400 is provided in an ultrawide bandwidth device, which includes an antenna 110, a transmitter circuit 145, and a receiver circuit 165. A transmitter amplifier 440 is provided between the antenna 110 and the transmitter circuit 145, and is configured to have an operational transmitter output impedance when the transceiver 400 is in a transmit mode and an isolation transmitter output impedance when the transceiver 400 is in a receive mode. A receiver amplifier 460 is provided between the antenna 110 and the receiver circuit 165, and is configured to have an operational receiver input impedance when the transceiver 400 is in a receive mode and an isolation receiver input impedance when the transceiver 400 is in a transmit mode. The isolation transmitter output impedance is greater than the operational receiver input impedance, and the isolation receiver input impedance is greater than the operational transmitter output impedance. Thus, a transmitter and receiver can be isolated without using a transmit/receive switch.
摘要:
A raking receiver is provided in a wireless network. The raking receiver includes an antenna, first through Nth wavelet forming networks, first through Nth weighting mixers, a summer, a path mixer, and a signal processing circuit. The antenna receives an incoming signal. The first through Nth wavelet forming networks produce first through Nth locally generated wavelets. The first through Nth weighting mixers multiply the first through Nth locally generated wavelets by first through Nth weighting values, respectively, to produce first through Nth weighted wavelets. The summer adds together the first through Nth weighted wavelets to produce a weighted correlation input signal. The path mixer multiplies the incoming signal with the weighted correlation input signal to produce a correlated signal. And the signal processing circuit receives the correlated signal and produces a digital bit value. N is preferably an integer greater than 1.
摘要:
A monocycle forming network may include a monocycle generator, up and down pulse generators, data modulators and clock generation circuits. The network may generate monocycle pulses having very narrow pulse widths, approximately 80 picoseconds peak to peak. The monocycles may be modulated to carry data in ultra-wideband communication systems.
摘要:
An ultra-wide band (UWB) waveform generator and encoder for use in a UWB digital communication system. The UWB waveform is made up of a sequence of shaped wavelets. The waveform generator produces multi-amplitude, multi-phase wavelets that are time-constrained, zero mean, and can be orthogonal in phase, yet still have a −10 dB power spectral bandwidth that is larger than the frequency of the peak of the power spectrum In one embodiment, the wavelets are bi-phase wavelets. The encoder multiplies each data bit by an n-bit identifying code, (e.g., a user code), resulting in a group of wavelets corresponding to each data bit. The identifying codeword is passed onto the UWB waveform generator for generation of a UWB waveform that can be transmitted via an antenna.
摘要:
An ultra wide bandwidth communications system, method and computer program product including an ultra wide bandwidth timing generator. The timing generator includes a high frequency clock generation circuit having low phase noise; a low frequency control generation circuit; and a modulation circuit coupled between the high frequency clock generation circuit and the low frequency control generation circuit. The high frequency clock generation circuit generates a plurality of high frequency clock signals. The low frequency control generation circuit generates a plurality of low frequency control signals. The modulation circuit modulates the high frequency clock signals with the low frequency control signals to produce an agile timing signal at a predetermined frequency and phase. The agile timing signal is generated at the predetermined frequency and phase by adjustments to at least one of frequency of the low frequency control signals, phase of the low frequency control signals, frequency of the high frequency clock signals, and phase of the high frequency clock signals.