摘要:
An ultra-wide band (UWB) waveform generator and encoder for use in a UWB digital communication system. The UWB waveform is made up of a sequence of shaped wavelets. The waveform generator produces multi-amplitude, multi-phase wavelets that are time-constrained, zero mean, and can be orthogonal in phase, yet still have a −10 dB power spectral bandwidth that is larger than the frequency of the peak of the power spectrum In one embodiment, the wavelets are bi-phase wavelets. The encoder multiplies each data bit by an n-bit identifying code, (e.g., a user code), resulting in a group of wavelets corresponding to each data bit. The identifying codeword is passed onto the UWB waveform generator for generation of a UWB waveform that can be transmitted via an antenna.
摘要:
A transceiver is provided, comprising: a programmable waveform generator configured to generate a base signal, the programmable waveform generator including a controllable waveform generator configured to generate an initial bandwidth signal having an initial frequency bandwidth; a multiple tone generator configured to generate a plurality of tone signals, each tone signal having a different frequency; one or more bandwidth multiplying circuits; and a control circuit a controller configured to control the operation of the controllable waveform generator, the tone generator and the one or more bandwidth multiplying circuits; a transmit port configured to output the base signal; a receive port configured to accept a received signal; a 90-degree splitter configured to receive the base signal and to generate a first split signal at a 0-degree output and a second split signal at a 90-degree output, the first and second split signals being separated by 90 degrees in phase; a first-mixer configured to mix the received signal and the first split signal to generate a quadrature-phase signal; and a second-mixer configured to mix the received signal and the second split signal to generate an in-phase signal.
摘要:
A transceiver 400 is provided in an ultrawide bandwidth device, which includes an antenna 110, a transmitter circuit 145, and a receiver circuit 165. A transmitter amplifier 440 is provided between the antenna 110 and the transmitter circuit 145, and is configured to have an operational transmitter output impedance when the transceiver 400 is in a transmit mode and an isolation transmitter output impedance when the transceiver 400 is in a receive mode. A receiver amplifier 460 is provided between the antenna 110 and the receiver circuit 165, and is configured to have an operational receiver input impedance when the transceiver 400 is in a receive mode and an isolation receiver input impedance when the transceiver 400 is in a transmit mode. The isolation transmitter output impedance is greater than the operational receiver input impedance, and the isolation receiver input impedance is greater than the operational transmitter output impedance. Thus, a transmitter and receiver can be isolated without using a transmit/receive switch.
摘要:
A method is provided for operating a wireless local device. In this method a local device receives a beacon for a current superframe in a common signal format. The beacon includes time slot assignment information. The local device then determines a device format for the transmission of data to a remote device based on format determination information. The device format can be one of a common signal format, and one or more wireless formats. The local device then determines one or more remote device time slots in the superframe assigned for transmission of the data to the remote device based on the time slot assignment information. Finally, the local device transmits the data in the one or more remote device time slots to the remote device using the device format.
摘要:
A method is provided for enabling a device function at a local device based on distance information, comprising: establishing a communication link with a remote device over a UWB medium using a multiple access protocol; determining a distance between the local device and the remote device; and controlling a device function for the remote device based on the determined distance, wherein the operation of controlling the device function enables the device function when the determined distance is below a set distance threshold, and wherein the operation of controlling the device function disables the device function when the determined distance is above the set distance threshold.
摘要:
A method is provided for estimating a frequency offset value. This method includes: receiving a signal from the transmitting device at the receiving device, the received signal having a transmitter frequency (510); generating a local signal at the receiving device, the local signal having a starting frequency (520); comparing a received signal phase and a local signal phase to determine an adjusted error signal representing a phase difference between the received signal and the local signal (530); adjusting a current frequency of the local signal from the starting frequency to the transmitting frequency over a time period (540); integrating the adjusted error signal over the time period to generate an integrated error signal (550); and filtering the integrated error signal to generate a frequency difference estimate indicative of the frequency difference between the transmitter frequency and the starting frequency (560).
摘要:
An ultra-wide band (UWB) waveform generator and encoder are provided. The encoder multiplies each data bit by an n-bit identifying code to create a stream of bits corresponding to each data bit, i.e., an original codeword. The original codeword is passed to the UWB waveform generator for generation of a UWB waveform comprised of shaped wavelets that can be transmitted via an antenna. The UWB waveform generator may use a two-stage differential mixer. A first stage combines pulses from a pulse generator with a first derivative codeword derived from the original codeword. The wavelet output from the first stage is input to a second differential mixer along with a second derivative codeword also derived from the original codeword and orthogonal to the first derivative codeword. The wavelet output from the second mixer represents an inversion of the original codeword, and is passed to an inverting amplifier before being transmitted.
摘要:
A method and an apparatus are provided for mitigating spectral lines in a wireless signal. First a code word is generated that is made up of a plurality of binary or ternary encoded pulses. Then a plurality of code-word-modulated wavelets are generated in response to the code word. These wavelets can be Gaussian monopulses, repeated cycles of a sine wave, or other shaped impulse signals. The plurality of code-word-modulated wavelets are then modulated with a bit of transmit data to form a plurality of data-modulated wavelets. This modulation serves to whiten the signals since the transmit data is effectively random. Finally, the plurality of data-modulated wavelets are transmitted to a remote device.
摘要:
A system, method, and computer program product for removing “narrowband” interference from a broader spectrum containing a UWB signal, in a receiver of the UWB signal. The RFI is extracted from a broader spectrum to remove interference from the UWB signal, by employing an impulse response in a radio front-end of the UWB receiver that is matched with an incoming wavelet employed as part of a UWB signal to be received, matching the impulse response to the wavelet and its time-shifted and inverted versions, passing the wavelet unscathed through the receiver, and excising narrowband signals (continuous tones). Exemplary embodiments for the RFI extraction mechanism include a transmission line circuit, an active transmission line circuit, and an adaptable, controllable phase delay circuit.
摘要:
A transceiver is provided, comprising: a programmable waveform generator configured to generate a base signal, the programmable waveform generator including a controllable waveform generator configured to generate an initial bandwidth signal having an initial frequency bandwidth; a multiple tone generator configured to generate a plurality of tone signals, each tone signal having a different frequency; one or more bandwidth multiplying circuits; and a control circuit a controller configured to control the operation of the controllable waveform generator, the tone generator and the one or more bandwidth multiplying circuits; a transmit port configured to output the base signal; a receive port configured to accept a received signal; a 90-degree splitter configured to receive the base signal and to generate a first split signal at a 0-degree output and a second split signal at a 90-degree output, the first and second split signals being separated by 90 degrees in phase; a first-mixer configured to mix the received signal and the first split signal to generate a quadrature-phase signal; and a second-mixer configured to mix the received signal and the second split signal to generate an in-phase signal.