Abstract:
Satellite broadcasting methods include providing a cellular satellite communications system configured to transmit information separately to a plurality of different geographic locations defined by a respective plurality of cellular satellite spotbeams, and concurrently transmitting a program signal on a plurality of different spotbeams. The plurality of different spotbeams may include less than a total number of spotbeams of the cellular satellite communications system. The plurality of different spotbeams may be selected adaptively from an available pool of spotbeams based on locations of users requesting the broadcast program signal. Corresponding satellite gateways, broadcast controllers and wireless user terminals are also provided.
Abstract:
A space segment for a radioterminal communications system includes a satellite having service link antennas of different sizes that are configured to communicate with at least one radioterminal. The service link antennas of different size may serve different sized geographic areas, which may at least partially overlap. Analogous radioterminal communications methods also are provided.
Abstract:
A radioterminal includes a receiver that is configured to receive information from a base station by receiving a first measure of the information from the base station and a second measure of the information from a second device. The second device receives a measure of the information from the base station, responsively generates the second measure of the information and transmits the second measure of the information to the radioterminal over a short-range wireless link. Related methods are also described.
Abstract:
A space-based component, such as a satellite, is configured to receive wireless communications from radiotelephones in a satellite footprint over an uplink satellite radiotelephone frequency, and to transmit wireless communications to the radiotelephones over a downlink radiotelephone frequency. An ancillary terrestrial network, that may include one or more ancillary terrestrial components, is configured to transmit wireless communications to, and receive wireless communications from, the radiotelephones over the downlink satellite radiotelephone frequency in a time-division duplex mode. By terrestrially transmitting and receiving wireless communications over the downlink satellite radiotelephone frequency in a time-division duplex mode, interference at the space-based component and/or at the gateway, by the ancillary terrestrial network and/or the radiotelephones due to terrestrial reuse of cellular satellite frequency spectrum, may be reduced or eliminated.
Abstract:
A first and/or a second communications system may provide communications service over a geographic area. A method of operating the first and/or the second communications systems may include generating a measure of aggregate interference reaching a satellite of the second communications system substantially from devices of the first communications system. The measure of aggregate interference reaching the satellite of the second communications system may be transmitted to an element of the first communications system.
Abstract:
Wireless communications are transmitted from at least two radioterminals to a base station co-channel over a return link using a return link alphabet. Wireless communications are also transmitted from the base station to the at least two radioterminals over a forward link using a forward link alphabet that has more symbols than the return link alphabet. The co-channel signals are deciphered at the receiver, while the radioterminals can use a smaller return link alphabet, which can reduce the power dissipation at the radioterminals.
Abstract:
Two satellite communications systems can use the same frequency or frequencies in geographically overlapping footprints, without creating undue interference in a given system that is caused by the same frequency signal(s) that is/are used by the other system. In particular, an aggregate Effective Isotropic Radiated Power (EIRP) of the radioterminals and/or ancillary terrestrial components of a second satellite communications system in the common footprint is sufficiently low, and/or the receive antenna gain of a first satellite communications system is sufficiently low compared to the receive antenna gain of the second satellite communications system, so as to increase an aggregate receiver noise that is seen by the first satellite system receivers by an amount that does not substantially change a Quality of Service (QoS) of the first satellite communications system.
Abstract:
Methods, radioterminals, and broadcast message generation consoles provide location-based broadcast messaging for users. A method of operating a radioterminal can include receiving at the radioterminal over a wireless air interface a broadcast message that includes region information that defines a geographic region of applicability. A determination is made at the radioterminal whether the radioterminal is located in the region of applicability. A functional mode of the radioterminal is activated in response to the radioterminal being in the region of applicability. The functional mode may include activating a user interface of the radioterminal.
Abstract:
Numerous embodiments are provided that may be used to provide enhanced capacity and/or Quality-of-Service for OFDM-based systems such as LTE and/or WiMAX. Various service/device modes and/or applications are also provided. According to embodiments of the invention, a transformation may be performed on a data vector by a transmitter, prior to the transmitter transmitting the data vector, to distribute elements of the data vector over an available frequency space, thus providing robustness to channel anomalies such as fading and/or interference. The transformation may be based upon a Fourier transform or a truncated Butler matrix. At a receiver, an inverse of the transformation may be applied to recover data. The receiver and/or transmitter may be configured with an antenna array that may comprise a two-dimensional lattice of antenna elements, and may further be configured to estimate a number of resolvable signal paths and to form a spatial filter/rake that is matched to the number of resolvable signal paths. Embodiments relating to architectures, systems, methods, devices, software, firmware and/or computer program products are provided.
Abstract:
A radioterminal includes a receiver that is configured to receive information from a base station by receiving a first measure of the information from the base station and a second measure of the information from a second device. The second device receives a measure of the information from the base station, responsively generates the second measure of the information and transmits the second measure of the information to the radioterminal over a short-range wireless link. Related methods are also described.