Abstract:
System and method for improving operation of an industrial automation system, which includes a control system that controls operation of an industrial automation process. The control system includes a feature extraction block that determines extracted features by transforming process data determined during operation of an industrial automation process based at least in part on feature extraction parameters; a feature selection block that determines selected features by selecting a subset of the extracted features based at least in part on feature selection parameters, in which the selected features are expected to be representative of the operation of the industrial automation process; and a clustering block that determines a first expected operational state of the industrial automation system by mapping the selected features into a feature space based at least in part on feature selection parameters.
Abstract:
A modular analysis engine provided classification of variables and data in an industrial automation environment. The module may be instantiated upon receipt of an input data structure, such as containing annotated data for any desired variables related to the machine or process monitored and/or controlled. The data may be provided in a batch or the engine may operate on streaming data. The output of the module may be a data structure that can be used by other modules, such as for modeling, optimization, and control. The classification may allow for insightful analysis, such as for textual classification of alarms provided in the automation setting.
Abstract:
System and method for improving operation of an industrial automation system, which includes a control system that controls operation of an industrial automation process. The control system includes a feature extraction block that determines extracted features by transforming process data determined during operation of an industrial automation process based at least in part on feature extraction parameters; a feature selection block that determines selected features by selecting a subset of the extracted features based at least in part on feature selection parameters, in which the selected features are expected to be representative of the operation of the industrial automation process; and a clustering block that determines a first expected operational state of the industrial automation system by mapping the selected features into a feature space based at least in part on feature selection parameters.
Abstract:
One embodiment of the present disclosure describes an industrial system, which includes a control system that controls operation of an industrial process by instructing an automation component in the industrial system to implement a manipulated variable setpoint. The control system includes a process model that model operation of the industrial process, control optimization that determines the manipulated variable setpoint based at least in part on the process model, a control objective function, and constraints on the industrial process, in which the control objective function includes a tuning parameter that describes weighting between aspects of the industrial process affected by the manipulated variable setpoint; and tuning optimization circuitry that determines the tuning parameter based at least in part on a tuning objective function, in which the tuning objective function is determined based at least in part on a closed form solution to an augmented version of the control objective function, which includes the constraints as soft constraints.
Abstract:
In certain embodiments, a control/optimization system includes an instantiated model object stored in memory on a model server. The model object includes a model of a plant or process being controlled. The model object comprises an interface that precludes the transmission of proprietary information via the interface. The control/optimization system also includes a decision engine software module stored in memory on a decision support server. The decision engine software module is configured to request information from the model object through a communication network via a communication protocol that precludes the transmission of proprietary information, and to receive the requested information from the model object through the communication network via the communication protocol.
Abstract:
In certain embodiments, a control system includes a model-less controller configured to control operation of a plant or process. The control system also includes an automation controller operatively connected for access to a model of the plant or process being controlled by the model-less controller. The automation controller is configured to modify parameters of the model-less controller via an explicit optimization procedure.
Abstract:
The embodiments described herein include one embodiment that provides a control method that includes connecting a first controller to a control system; receiving control system configuration data from a database, in which the configuration data comprises holistic state data of a second controller in the control system; and configuring operation of the first controller based at least in part on the configuration data received.
Abstract:
The embodiments described herein include one embodiment that provides a control method including determining a linear approximation of a pre-determined non-linear model of a process to be controlled, determining a convex approximation of the nonlinear constraint set, determining an initial stabilizing feasible control trajectory for a plurality of sample periods of a control trajectory, executing an optimization-based control algorithm to improve the initial stabilizing feasible control trajectory for a plurality of sample periods of a control trajectory, and controlling the controlled process by application.
Abstract:
In certain embodiments, a control system includes a model-less controller configured to control operation of a plant or process. The control system also includes an automation controller operatively connected for access to a model of the plant or process being controlled by the model-less controller. The automation controller is configured to modify parameters of the model-less controller via an explicit optimization procedure.
Abstract:
A non-transitory computer-readable medium comprising computer-executable instructions that, when executed, are configured to cause a processor to perform operations that include receiving operational parameters for one or more automation devices, wherein the one or more automation devices are configured to implement control logic generated based on a decision tree. The operations also include receiving an output by the decision tree based on the operational parameters. Further, the operations include determining the output is an anomalous output based on a constraint associated with the decision tree. Further still, the operations include generating an updated decision tree based on the anomalous output. Even further, the operations include generating updated control logic for the one or more automation devices based on the updated decision tree. Even further, the operations include sending the updated control logic to the one or more automation devices.