Abstract:
A method, medium, and system scalably encoding/decoding audio/speech. The method includes splitting an input signal into a low frequency band signal that is lower than a predetermined frequency and a high frequency band signal that is higher than the predetermined frequency, scalably encoding the split low frequency band signal into a core layer and one or more extension layers and then decoding the encoded core layer and the encoded extension layers, generating an error signal by using the split low frequency band signal and a decoded signal of the encoded core layer and the encoded extension layers, and encoding the error signal and the high frequency band signal into a signal-to-noise ratio (SNR) enhancement layer and a bandwidth extension layer.
Abstract:
A spectrum encoding method includes selecting an important spectral component in band units for a normalized spectrum and encoding information of the selected important spectral component for a band, based on a number, a position, a magnitude and a sign thereof. A spectrum decoding method includes obtaining from a bitstream, information about an important spectral component for a band of an encoded spectrum and decoding the obtained information of the important spectral component, based on a number, a position, a magnitude and a sign of the important spectral component.
Abstract:
A quantization device includes: a trellis-structured vector quantizer which quantizes a first error vector between an N-dimensional (here, “N” is two or more) subvector and a first predictive vector; and an inter-frame predictor which generates a first predictive vector from the quantized N-dimensional subvector, wherein the inter-frame predictor uses a predictive coefficient comprising an N×N matrix and performs an inter-frame prediction using the quantized N-dimensional subvector of a previous stage.
Abstract:
A voice signal processing method includes acquiring a near-end noise signal and a near-end voice signal by using at least one microphone, acquiring a far-end voice signal according to an incoming call, determining a noise control parameter and a voice signal change parameter based on at least one of information about the near-end voice signal, information about the near-end noise signal, or information about the far-end voice signal, generating an anti-phase signal of the near-end noise signal based on the noise control parameter, changing the far-end voice signal to improve articulation of the far-end voice signal based on information related to at least one of the voice signal change parameter, the near-end noise signal, or the anti-phase signal, and outputting the anti-phase signal and the changed far-end voice signal.
Abstract:
A method and apparatus for performing coding and decoding for high-frequency bandwidth extension. The decoding apparatus may include: a mode checking unit to check mode information of each of frames included in a bitstream; a first core decoding unit to perform code excited linear prediction (CELP) decoding on a CELP coded frame, when a core coding mode of a low-frequency signal indicates a CELP coding mode; a first extension decoding unit to generate a decoded signal of a high-frequency band by using at least one of a result of the performing the CELP decoding and an excitation signal of the low-frequency signal; a second core decoding unit to perform audio decoding on an audio coded frame, when the core coding mode indicates an audio coding mode; and a second extension decoding unit to generate a decoded signal of the high-frequency band by performing frequency-domain (FD) extension decoding.
Abstract:
A method and an apparatus for packet loss concealment, and a decoding method and an apparatus employing same are provided. A method for time domain packet loss concealment includes checking whether a current frame is either an erased frame or a good frame after the erased frame, when the current frame is either the erased frame or the good frame after the erased frame, obtaining signal characteristics, selecting one of a phase matching tool and a smoothing tool based on a plurality of parameters including the signal characteristics, and performing a packet loss concealment processing on the current frame based on the selected tool.
Abstract:
The present invention relates to a method and an apparatus for encoding and decoding spectrum coefficients in the frequency domain. The spectrum encoding method may comprise the steps of: selecting an encoding type on the basis of bit allocation information of respective bands; performing zero encoding with respect to a zero band; and encoding information of selected significant frequency components with respect to respective non-zero bands. The spectrum encoding method enables encoding and decoding of spectrum coefficients which is adaptive to various bit-rates and various sub-band sizes. In addition, a spectrum can be encoded using a TCQ method at a fixed bit rate using a bit-rate control module in a codec that supports multiple rates. Encoding performance of the codec can be maximised by encoding high performance TCQ at a precise target bit rate.
Abstract:
Provided are a terminal device and method of performing a call function transmitting ambient audio with high sensitivity.A terminal device performing a call function with at least one external device via a network may include a receiver configured to receive at least one of an audio transmission signal and a video transmission signal to be transmitted to the external device; a processor configured to analyze at least one of the audio transmission signal and the video transmission signal, select one of a speech mode and an audio mode, based on a result of the analysis, and compress the audio transmission signal, based on the selected mode; a communicator configured to transmit the compressed audio transmission signal to the external device, and receive an audio reception signal from the external device; and an output unit configured to output the audio reception signal.
Abstract:
A method and apparatus for performing coding and decoding for high-frequency bandwidth extension. The coding apparatus may classify a coding mode of a low-frequency signal of an input signal based on characteristics of the low-frequency signal of an input signal, perform code excited linear prediction coding or audio coding on the LPC excitation signal of the low-frequency signal of an input signal, and perform time-domain (TD) extension coding or frequency-domain (FD) extension coding on a high-frequency signal of an input signal. When the FD extension coding is performed, the coding apparatus may generate a base excitation signal for a high band using an input spectrum, obtain an energy control factor of a sub-band in a frame using the base excitation signal and the input spectrum, generate an energy signal based on the input spectrum and the energy control factor, for the sub-band in the frame, and quantize the energy signal.
Abstract:
The present invention relates to a method and an apparatus for encoding and decoding spectrum coefficients in the frequency domain. The spectrum encoding method may comprise the steps of: selecting an encoding type on the basis of bit allocation information of respective bands; performing zero encoding with respect to a zero band; and encoding information of selected significant frequency components with respect to respective non-zero bands. The spectrum encoding method enables encoding and decoding of spectrum coefficients which is adaptive to various bit-rates and various sub-band sizes. In addition, a spectrum can be encoded using a TCQ method at a fixed bit rate using a bit-rate control module in a codec that supports multiple rates. Encoding performance of the codec can be maximised by encoding high performance TCQ at a precise target bit rate.