SYSTEMS AND METHODS FOR CLASSIFYING AN ANOMALY MEDICAL IMAGE USING VARIATIONAL AUTOENCODER

    公开(公告)号:US20210193298A1

    公开(公告)日:2021-06-24

    申请号:US16722429

    申请日:2019-12-20

    Abstract: Methods and systems for classifying an image. For example, a method includes: inputting a medical image into a recognition model, the recognition model configured to: generate one or more attribute distributions that are substantially Gaussian when inputted with a normal image; and generate one or more attribute distributions that are substantially non-Gaussian when inputted with an abnormal image; generating, by the recognition model, one or more attribute distributions corresponding to medical image; generating a marginal likelihood corresponding to the likelihood of a sample image substantially matching the medical image, the sample image generated by sampling, by a generative model, the one or more attribute distributions; and generating a classification by at least: if the marginal likelihood is greater than or equal to a predetermined likelihood threshold, determining the image to be normal; and if the marginal likelihood is less than the predetermined likelihood threshold, determining the image to be abnormal.

    CARDIAC FEATURE TRACKING
    42.
    发明申请

    公开(公告)号:US20210157464A1

    公开(公告)日:2021-05-27

    申请号:US17014609

    申请日:2020-09-08

    Abstract: Cardiac features captured via an MRI scan may be tracked and analyzed using a system described herein. The system may receive a plurality of MR slices derived via the MRI scan and present the MR slices in a manner that allows a user to navigate through the MR slices. Responsive to the user selecting one of the MR slices, contextual and global cardiac information associated with the selected slice may be determined and displayed. The contextual information may correspond to the selected slice and the global information may encompass information gathered across the plurality of MR slices. A user may have the ability to navigate between the different display areas and evaluate the health of the heart with both local and global perspectives.

    Systems and methods for medical image fusion

    公开(公告)号:US12285283B2

    公开(公告)日:2025-04-29

    申请号:US17948822

    申请日:2022-09-20

    Abstract: A 3D anatomical model of one or more blood vessels of a patient may be obtained using CT angiography, while a 2D image of the blood vessels may be obtained based on fluoroscopy. The 3D model may be registered with the 2D image based on a contrast injection site identified on the 3D model and/or in the 2D image. A fused image may then be created to depict the overlaid 3D model and 2D image, for example, on a monitor or through a virtual reality headset. The injection site may be determined automatically or based on a user input that may include a bounding box drawn around the injection site on the 3D model, a selection of an automatically segmented area in the 3D model, etc.

    Tubular structure segmentation
    47.
    发明授权

    公开(公告)号:US12205277B2

    公开(公告)日:2025-01-21

    申请号:US17564304

    申请日:2021-12-29

    Abstract: Described herein are systems, methods, and instrumentalities associated with image segmentation such as tubular structure segmentation. An artificial neural network is trained to segment tubular structures of interest in a medical scan image based on annotated images of a different type of tubular structures that may have a different contrast and/or appearance from the tubular structures of interest. The training may be conducted in multiple stages during which a segmentation model learned from the annotated images during a first stage may be modified to fit the tubular structures of interest in a second stage. In examples, the tubular structures of interest may include coronary arteries, catheters, guide wires, etc., and the annotated images used for training the artificial neural network may include blood vessels such as retina blood vessels.

    SYSTEMS AND METHODS FOR SEGMENTING A MEDICAL IMAGE SEQUENCE

    公开(公告)号:US20240420334A1

    公开(公告)日:2024-12-19

    申请号:US18209704

    申请日:2023-06-14

    Abstract: An apparatus may obtain a sequence of medical images of a target structure and determine, using a first ANN, a first segmentation and a second segmentation of the target structure based on a first medical image and a second medical image, respectively. The first segmentation may indicate a first plurality of pixels that may belong to the target structure. The second segmentation may indicate a second plurality of pixels that may belong to the target structure. The apparatus may identify, using a second ANN, a first subset of true positive pixels among the first plurality of pixels that may belong to the target structure, and a second subset of true positive pixels among the second plurality of pixels that may belong to the target structure. The apparatus may determine a first refined segmentation and a second refined segmentation of the target structure based on the true positive pixels.

    Image registration
    49.
    发明授权

    公开(公告)号:US12141990B2

    公开(公告)日:2024-11-12

    申请号:US17475534

    申请日:2021-09-15

    Abstract: Deep learning based systems, methods, and instrumentalities are described herein for registering images from a same imaging modality and different imaging modalities. Transformation parameters associated with the image registration task are determined using a neural ordinary differential equation (ODE) network that comprises multiple layers, each configured to determine a respective gradient update for the transformation parameters based on a current state of the transformation parameters received by the layer. The gradient updates determined by the multiple ODE layers are then integrated and applied to initial values of the transformation parameters to obtain final parameters for completing the image registration task. The operations of the ODE network may be facilitated by a feature extraction network pre-trained to determine content features shared by the input images. The input images may be resampled into different scales, which are then processed by the ODE network iteratively to improve the efficiency of the ODE operations.

    Systems and methods for MRI data processing

    公开(公告)号:US12141234B2

    公开(公告)日:2024-11-12

    申请号:US17741323

    申请日:2022-05-10

    Abstract: Described herein are systems, methods, and instrumentalities associated with processing complex-valued MRI data using a machine learning (ML) model. The ML model may be learned based on synthetically generated MRI training data and by applying one or more meta-learning techniques. The MRI training data may be generated by adding phase information to real-valued MRI data and/or by converting single-coil MRI data into multi-coil MRI data based on coil sensitivity maps. The meta-learning process may include using portions of the training data to conduct a first round of learning to determine updated model parameters and using remaining portions of the training data to test the updated model parameters. Losses associated with the testing may then be determined and used to refine the model parameters. The ML model learned using these techniques may be adopted for a variety of tasks including, for example, MRI image reconstruction and/or de-noising.

Patent Agency Ranking