Systems and methods for enhancing medical images

    公开(公告)号:US12190508B2

    公开(公告)日:2025-01-07

    申请号:US17726383

    申请日:2022-04-21

    Abstract: Described herein are systems, methods, and instrumentalities associated with medical image enhancement. The medical image may include an object of interest and the techniques disclosed herein may be used to identify the object and enhance a contrast between the object and its surrounding area by adjusting at least the pixels associated with the object. The object identification may be performed using an image filter, a segmentation mask, and/or a deep neural network trained to separate the medical image into multiple layers that respectively include the object of interest and the surrounding area. Once identified, the pixels of the object may be manipulated in various ways to increase the visibility of the object. These may include, for example, adding a constant value to the pixels of the object, applying a sharpening filter to those pixels, increasing the weight of those pixels, and/or smoothing the edge areas surrounding the object of interest.

    SELF-CONTRASTIVE LEARNING FOR IMAGE PROCESSING

    公开(公告)号:US20230138380A1

    公开(公告)日:2023-05-04

    申请号:US17513493

    申请日:2021-10-28

    Abstract: A neural network system implements a model for generating an output image based on a received input image. The model is learned through a training process during which parameters associated with the model are adjusted so as to maximize a difference between a first image predicted using first parameter values of the model and a second image predicted using second parameter values of the model, and to minimize a difference between the second image and a ground truth image. During a first iteration of the training process the first image is predicted and during a second iteration the second image is predicted. The first parameter values are obtained during the first iteration by minimizing a difference between the first image and the ground truth image, and the second parameter values are obtained during the second iteration by maximizing the difference between the first image and the second image.

    IMAGE REGISTRATION
    9.
    发明申请

    公开(公告)号:US20230079164A1

    公开(公告)日:2023-03-16

    申请号:US17475534

    申请日:2021-09-15

    Abstract: Deep learning based systems, methods, and instrumentalities are described herein for registering images from a same imaging modality and different imaging modalities. Transformation parameters associated with the image registration task are determined using a neural ordinary differential equation (ODE) network that comprises multiple layers, each configured to determine a respective gradient update for the transformation parameters based on a current state of the transformation parameters received by the layer. The gradient updates determined by the multiple ODE layers are then integrated and applied to initial values of the transformation parameters to obtain final parameters for completing the image registration task. The operations of the ODE network may be facilitated by a feature extraction network pre-trained to determine content features shared by the input images. The input images may be resampled into different scales, which are then processed by the ODE network iteratively to improve the efficiency of the ODE operations.

    MOTION ARTIFACTS SIMULATION
    10.
    发明申请

    公开(公告)号:US20220392018A1

    公开(公告)日:2022-12-08

    申请号:US17340635

    申请日:2021-06-07

    Abstract: Motion contaminated magnetic resonance (MR) images for training an artificial neural network to remove motion artifacts from the MR images are difficult to obtain. Described herein are systems, methods, and instrumentalities for injecting motion artifacts into clean MR images and using the artificially contaminated images for machine learning and neural network training. The motion contaminated MR images may be created based on clean source MR images that are associated with multiple physiological cycles of a scanned object, and by deriving MR data segments for the multiple physiological cycles based on the source MR images. The MR data segments thus derived may be combined to obtain a simulated MR data set, from which one or more target MR images may be generated to exhibit a motion artifact. The motion artifact may be created by manipulating the source MR images and/or controlling the manner in which the MR data set or the target MR images are generated.

Patent Agency Ranking